Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLPシリーズ「強化学習」輪読会 #5
Search
shimacos
January 14, 2020
Science
1
470
MLPシリーズ「強化学習」輪読会 #5
MLPシリーズ「強化学習」輪読会 での発表資料です。
5.3 説の「ブラックボックス生成モデル」に対するプランニングについてまとめました。
shimacos
January 14, 2020
Tweet
Share
More Decks by shimacos
See All by shimacos
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.6k
LayerXにおけるAI・機械学習技術の活用と展望 / layerx-ai-jsai2024
shimacos
2
3.4k
BigQueryで参加するレコメンドコンペ / bq-recommend-competition-kaggle-meetup-tokyo-2023
shimacos
1
2.1k
[関東Kaggler会 スポンサーセッション] LayerXの事業と機械学習でできること / kanto-kaggler-layerx
shimacos
0
1.4k
[CVPR 2023 論文紹介] Unifying Vision, Text, and Layout for Universal Document Processing / kanto-cv-59-udop
shimacos
3
1.1k
LayerXにおける機械学習を活用したOCR機能の改善に関する取り組み / layerx-jsai-2023
shimacos
3
26k
Kaggle Days Championship予選全12回まとめ + TIPS
shimacos
0
6.6k
Kaggle Feedback Prizeコンペ 反省会
shimacos
5
3.5k
BQMLことはじめ
shimacos
2
1.8k
Other Decks in Science
See All in Science
Tensor Representations in Signal Processing and Machine Learning (Tutorial at APSIPA-ASC 2020)
yokotatsuya
0
120
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
2k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
680
白金鉱業Meetup Vol.15 DMLによる条件付処置効果の推定_sotaroIZUMI_20240919
brainpadpr
2
690
メール送信サーバの集約における透過型SMTP プロキシの定量評価 / Quantitative Evaluation of Transparent SMTP Proxy in Email Sending Server Aggregation
linyows
0
680
マテリアルズ・インフォマティクスの先端で起きていること / What's Happening at the Cutting Edge of Materials Informatics
snhryt
1
190
オンプレミス環境にKubernetesを構築する
koukimiura
0
130
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
160
学術講演会中央大学学員会八王子支部
tagtag
0
280
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
250
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
160
Valuable Lessons Learned on Kaggle’s ARC AGI LLM Challenge (PyDataGlobal 2024)
ianozsvald
0
240
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Mobile First: as difficult as doing things right
swwweet
223
9.4k
Side Projects
sachag
452
42k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
570
The Pragmatic Product Professional
lauravandoore
32
6.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Transcript
MLPシリーズ「強化学習」輪読会 #5 「ブラックボックス生成モデル」に対するプランニング 2020/01/14, Naoto Shimakoshi
自己紹介 2 • 名前 • 島越 直⼈ (シマコシ ナオト) •
よくトリゴエと間違えられますがシマコシです。 • Twitter • @nt_4o54 • 経歴 • 機械系出⾝ • 某IT企業でデータサイエンティスト⼀年⽬ • 最近強化学習に興味あり • Kaggle • @shimacos (⾦ 1, ソロ銀 2, ソロ銅3) • Kaggle Master
5章の後半からを扱います 3
5.3 ブラックボックス生成モデルに対するプランニング 4 • ブラックボックス⽣成モデルとは • 任意の状態⾏動対の⼊⼒に対して報酬と次ステップの状態を出⼒するようなモデル ( ) •
シミュレータやドメイン知識、データから設計したものを扱う (確率的なものが多い) • プランニングのアプローチの種類 • 幅優先探索 • 動的計画法 (ref. Chapter 2), スパースサンプリング法 (確率的幅優先探索) • 深さ優先探索 • UCT法 -> モンテカルロ⽊探索
• 状態数に計算量が依存しないため、状態数が⾮常に⼤きいときに有効 • 各親ノードの⾏動に対して からN回サンプリングを⾏うことで⽊を成⻑させる • これを事前に決めたパラメータTだけ深さ⽅向に繰り返す • 後⽅から再帰的に状態価値関数を計算 •
注意点:動的計画法と異なり、⼊⼒された状態の最適⾏動しか求めない 5.3.1 スパースサンプリング法 5 親ノード 孫ノード ⼦ノード
• 元論⽂でスパースサンプリング法で求まる⽅策がε最適であるための条件が⽰されている。 • 条件: がMDP、報酬の上限値が既知 ( ) • 割引率を1に近づけるほどTとNを⼤きくしなければいけない。 •
割引率を1に近づけたい(先のことをなるべく考慮したい)問題設定には不向き 5.3.1 スパースサンプリング法のNとTの設定方法 6
• スパースサンプリング法と異なり、経験的に良さそうな⾏動を優先的に選択 • 深さ優先探索を⾏い、探索を⾏ったノードのみ⽊に追加する • 各ノードが滞在回数 を保持する • 多腕バンディットにおけるUCBI法に基づいた⾏動選択 •
同⼀の値があればランダムに選択 • Tはスパースサンプリング法によって決定することもある • 探索した経験に基づき価値関数を更新 • 常に平均値になるように更新を⾏う 5.3.2 UCT法 7 探索強度を定めるハイパラ ⼤きいほど探索回数が少ないノードを探索 (報酬の⼤きさ、割引率により決定)
• UCT1法 • 通常のUCT法は異なるタイムステップの状態を異なるものとして扱うが、これを同⼀の ものとして扱い、ノード間でmやqを共有する • その他のアプローチ • ⾏動価値関数を関数近似することで汎化性能を⾼める •
TD (λ)法のように にnステップ切断リターンを⽤いることで、推定分散を⼩さくする 5.3.2 UCT法の改良 8
• UCT法の⼀般化 • 意思決定系列のシミュレーションをRollout、Rolloutに⽤いる⽅策を既定⽅策と呼ぶ • 既定⽅策は多くの場合、ランダム⽅策 • UCT法とは異なり、根ノードに近い⼀部のノードのみ保持する • アルファ碁など多くのゲームAIの基礎
• アルゴリズム (http://blog.brainpad.co.jp/entry/2018/04/05/163000が分かりやすい) • ⽊探索:葉ノードに到達するまで状態観測と⾏動選択を繰り返す (UCT法が使われること が多い) • ノード展開:経験回数が閾値を超えた場合、新たに状態ノードとそれに対応する状態⾏動 対の⼦ノードを作成し、初期化 • 葉ノード評価:葉ノード以降について既定⽅策によるロールアウトを実施することで獲得 • ノード更新:葉ノードの評価結果を根ノードまで伝播させ、各ノードの統計量を更新 5.3.3 モンテカルロ木探索 (MCTS) 9