in Latent Space,” NAACL, 1446–1458, 2024. [Mansouri+, ICTIR, 2019] Mansouri, B. et al., “Tangent-CFT: An Embedding Model for Mathematical Formulas,” ICTIR, 11–18, 2019. [Krstovski&Blei, arXiv, 2018] Krstovski, K. and Blei, D.M., “Equation Embeddings,” arXiv, 2018. [Gangwar&Kani, TMLR, 2023] Gangwar, N. and Kani, N., “Semantic Representations of Mathematical Expressions in a Continuous Vector Space,” TMLR, 2023. [Meidani+, ICLR, 2024] Meidani, K. et al., “SNIP: Bridging mathematical symbolic and numeric realms with unified pre-training,” ICLR, 2024. [Bird+, 2009] Bird, S., Klein, E., & Loper, E., “Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit,” O’Reilly Media, Inc., 2009. [Rudolph+, NIPS, 2016] Rudolph, M. et al., “Exponential Family Embeddings,” NIPS, 2016. [Zanibbi+, SIGIR, 2016] Zanibbi, R. et al., “Multi-stage math formula search: Using appearance-based similarity metrics at scale,” SIGIR, 145–154, 2016. [La Cava+, NeurIPS, 2021] La Cava, W. et al., “Contemporary Symbolic Regression Methods and their Relative Performance,” NeurIPS, 2021. [Charton, arXiv, 2022] Charton, F., “Linear algebra with transformers.” arXiv, 2022. [Kamienny+, NeurIPS, 2022] Kamienny, P.-A. et al., “End-to-end Symbolic Regression with Transformers,” NeurIPS, 2022. [Kato&Kano, Comput. Aided Chem. Eng., 2022] Kato, S. and Kano, M., “Towards an automated physical model builder: CSTR case study,” Comput. Aided Chem. Eng., 1669–1674, 2022. [Sato+, J. Rheol., 2025] Sato, T. et al., “Rheo-SINDy: Finding a constitutive model from rheological data for complex fluids using sparse identification for nonlinear dynamics,” Journal of Rheology, 69, 15–34, 2025. 3FGFSFODFT 35