Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Random Walk in Data Science and Machine Learn...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
szilard
February 12, 2020
0
320
A Random Walk in Data Science and Machine Learning in Practice - CEU, Business Analytics Masters - Budapest, Febr 2020
szilard
February 12, 2020
Tweet
Share
More Decks by szilard
See All by szilard
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Data Con LA - Oct 2020
szilard
0
210
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - Albuquerque Machine Learning Meetup (Online) - Aug 2020
szilard
0
160
Better than Deep Learning: Gradient Boosting Machines (GBM) - eRum conference - invited talk - June 2020
szilard
0
140
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - LA Data Science Meetup - February 2020
szilard
0
130
Better than My Meetup/Conference Talks: Going Deeper in Various GBM Topics - GBM Advanced Workshop - Budapest, Nov 2019
szilard
0
97
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Budapest BI Forum, Budapest, Nov 2019
szilard
0
150
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - LA Data Science Meetup - Playa Vista, August 2019
szilard
0
140
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - Budapest R and Data Science Meetups - Budapest, June 2019
szilard
0
120
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - LA R Meetup - Santa Monica, May 2019
szilard
0
31
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Design in an AI World
tapps
0
140
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
410
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
700
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
56
Speed Design
sergeychernyshev
33
1.5k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
300
ラッコキーワード サービス紹介資料
rakko
1
2.3M
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
430
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Music & Morning Musume
bryan
47
7.1k
Transcript
A Random Walk in Data Science and Machine Learning in
Practice Szilard Pafka, PhD Chief Scientist, Epoch (USA) CEU, Business Analytics Masters Budapest, Febr 2020
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
None
None
CRISP-DM, 1999
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
Better than Deep Learning: Gradient Boosting Machines (GBM) - 2019
Updated Edition Szilard Pafka, PhD Chief Scientist, Epoch (USA) Barcelona, Los Angeles, Budapest, Berlin (confs/meetups) 2019
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
Source: Andrew Ng
Source: Andrew Ng
Source: Andrew Ng
None
None
None
None
Source: https://twitter.com/iamdevloper/
None
None
...
None
None
None
http://lowrank.net/nikos/pubs/empirical.pdf http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf
http://lowrank.net/nikos/pubs/empirical.pdf http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
Source: Hastie etal, ESL 2ed
Source: Hastie etal, ESL 2ed
Source: Hastie etal, ESL 2ed
Source: Hastie etal, ESL 2ed
None
None
None
None
None
None
10x
None
None
None
10x
10x
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.argmin.net/2016/06/20/hypertuning/
None
None
None
None
None
None
None
CPU 1
CPU 1 CPU 2
CPU 1 CPU 2
CPU 1 CPU 2
CPU 1 CPU 2
None
None
None
None
None
None
None
*
None
no-one is using this crap
(2018)
(2018)
None
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
Source: https://www.linkedin.com/pulse/winning-solution-kaggledays-2019-competition-san-francisco-mark-peng/
None
More:
None
A Few More Thoughts
None
None
None
None
None
None
None
None
None
None
None
None
None