Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ふわっと理解する類似画像検索技術
Search
TajimaTheMemer
April 17, 2019
Programming
0
160
ふわっと理解する類似画像検索技術
TajimaTheMemer
April 17, 2019
Tweet
Share
More Decks by TajimaTheMemer
See All by TajimaTheMemer
事業成長を加速させるGoのコード品質改善の取り組み / Code quality improvement for Go language
tajimathememer
5
2.8k
CronJobがschedule通りにJobを生成しない時
tajimathememer
0
1.5k
入門wasm
tajimathememer
0
140
Machine Learning As Software
tajimathememer
0
92
Other Decks in Programming
See All in Programming
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
290
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
1.1k
CSC307 Lecture 08
javiergs
PRO
0
660
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
Patterns of Patterns
denyspoltorak
0
1.3k
AI前提で考えるiOSアプリのモダナイズ設計
yuukiw00w
0
220
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
190
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
5.9k
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
220
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
680
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
160
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
640
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Building Adaptive Systems
keathley
44
2.9k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
96
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Designing for humans not robots
tammielis
254
26k
We Have a Design System, Now What?
morganepeng
54
8k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Optimizing for Happiness
mojombo
379
71k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
Transcript
ふわっと理解する 類似画像検索技術 社内
今日話すこと 統計・機械学習の専門的知識を有さない一般的なエ ンジニア向けに雰囲気で類似画像検索技術を理解し てもらう。
今日話さないこと ソースコードの中身 数式は一切使いません
類似画像検索技術 画像データをクエリとしてクエリと類似度の高い画像 データを検索する技術
画像の類似尺度は様々 タッチ・テクスチャーが 似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」
画像の類似尺度は様々 タッチ・テクスチャーが似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」
画像の類似尺度は様々 タッチ・テクスチャーが似てる 対象・構図が似てる ゴッホの「ひまわり」 ひまわりの写真 ゴッホの「夜のカフェテラス」 今日はこっちの話
類似画像検索技術も様々
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
しかし、ほぼ全ての手法で以下の流れは 共通する もにょもにょ...
今日は機械学習の手法を3つ組み合わせ たやり方を説明します。
具体的な流れ 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
フェーズ 特徴抽出
フェーズ1:特徴抽出 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
特徴抽出とは 推定や分析に有用と思われる情報を,生データから 抽出し,特徴として使えるようにすること 田島 特徴ベクトル ㎝ 特徴抽出
今回は 画像データからの特徴抽出 を使います。 ディープラーニングの手法の一種 空間的相関性のあるデータに強い 画像 音声
による画像分類 猫 入力された画像に写っている一般物体を分類する学習器を にデータを学習させて作成 犬 兎 犬 猫 兎 入力(RGB画像)
入力層 出力層 中間層
による特徴抽出 猫 犬 兎 犬 猫 兎 入力(RGB画像) 入力層 出力層
中間層 学習済み学習器の中間層の出力は一般物体の 視覚認識に基づいた特徴表現 特徴ベクトル
今回は という のアーキテクチャの 一種を クラスの一般物体画像を分類するタ スクで学習させたモデル 学習済みモデル に画 像を入力した時の中間層の出力 次元
を特 徴ベクトルとする
フェーズ :次元削減 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
次元削減 データの意味をできるだけ保ちつつ データの次元を減らすこと
直感的なイメージ 身長[cm] 体重[kg] α 2次元 1次元 データの意味をできるだけ保ちつ つ次元を減らす Aさん Bさん
Cさん Aさん Bさん Cさん
今回は 主成分分析 という手法を使います。 次元→ 次元に圧縮。
なぜ次元削減が必要か フェーズ3 近似最近傍探索をうまく機能させるために は、データの次元数を 次元以下にする必要があ る
フェーズ 近傍探索 特徴抽出 次元削減 近傍探索 フェーズ1 フェーズ2 フェーズ3
… 画像A 画像Aの特徴ベクトル 画像Aの特徴ベクトル 画像Bの特徴ベクトル 画像Cの特徴ベクトル 画像 は画像 よりも画像 に似ている
特徴抽出&次元削減 近傍探索 もにょもにょ...
近傍探索とは 距離空間における最も近い点を探索すること。 今回でいえば、最も近い画像の特徴ベクトルを探索すること。
今回は 高速近似最近傍探索ライブラリ 製 を使用。 ヒューリスティックではあるが、高速
実験
データセット で見つけた映画ポスターのデータセット約4万枚 そのうち約 万枚を使用
クエリ画像と類似度が高い の 映画ポスターの画像を出力してみる
クエリ1 クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
クエリ クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
クエリ クエリ画像 TOP 1 TOP 2 TOP 3 ※画像の著作権・肖像権を考慮。
おしまい