Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
パーフェクトイド空間とコホモロジー
Search
Naoya Umezaki
October 06, 2018
0
1.7k
パーフェクトイド空間とコホモロジー
MATHPOWER2018での講演。フィールズ賞受賞者Peter Scholzeの業績紹介。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
1.2k
ミケル点とべズーの定理
unaoya
0
970
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
690
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
870
Egisonパターンマッチによる彩色
unaoya
1
610
関数等式と双対性
unaoya
1
800
直交多項式と表現論
unaoya
0
900
導来代数幾何入門
unaoya
0
1k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
94
6.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Designing Experiences People Love
moore
142
24k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Automating Front-end Workflow
addyosmani
1370
200k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
Designing for humans not robots
tammielis
253
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Transcript
ύʔϑΣΫτΠυۭؒͱ ίϗϞϩδʔ Peter Scholzeͷۀհ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
डཧ༝ p ਐͰͷزԿͷݚڀ ▶ ύʔϑΣΫτΠυۭؒͷཧ ▶ ϥϯάϥϯζରԠͷԠ༻ ▶ ৽͍͠ίϗϞϩδʔཧ
pਐ ༗ཧ͔Β࣮3.14159265 · · · ༗ཧ͔Βp ਐ · · ·
245123 = 3+2p+1p2 +5p3 +4p4 +2p5 +· · ·
pਐ ▶ ࣮Ͱ0.9999 · · · = 1 ▶ p
= 2ͷͱ͖ɺpਐͰ· · · 111111 = −1
زԿֶ ଟ߲ࣜΛߟ͑Δͱਤܗ͕ܾ·Δɻ ▶ ԁx2 + y2 = 1 ▶ ପԁۂઢy2
= x3 + x ▶ ϑΣϧϚʔۂઢxn + yn = 1
ίϗϞϩδʔ ݀ͷΛ͑Δɻਤܗͷྨ͕Ͱ͖Δɻ H1 sing (X) = H1 dR (X) =
R2
ίϗϞϩδʔ ༷ʑͳίϗϞϩδʔ͕͋Δɻ υϥʔϜ ίϗϞϩδʔ ಛҟ ίϗϞϩδʔ ؔ ඍํఔࣜ ۭؒͷதͷ ਤܗͷมܗ
ίϗϞϩδʔͷൺֱ υϥʔϜ ίϗϞϩδʔ ಛҟ ίϗϞϩδʔ ϗοδ ίϗϞϩδʔ ίϗϞϩδʔͷൺֱ͔Βपظ͕ग़ͯ͘Δɻ
ͱίϗϞϩδʔ ▶ ੲ͔Βߟ͑ΒΕ͍͍ͯͨΖΜͳ͕ί ϗϞϩδʔΛͬͯදݱͰ͖Δɻ ▶ ʹԠ༻ʢϦʔϚϯ༧ͷྨࣅʣ ▶ ίϗϞϩδʔΛௐΕ৭ʑΘ͔Δʂ
ύʔϑΣΫτΠυۭؒ ▶ زԿଟ߲ࣜx, x2 + ax + b, . .
. ▶ ղੳزԿऩଋႈڃx + px + p2x2 + · · · ▶ ύʔϑΣΫτΠυۭؒ 1/x + p + p2x + · · · , 1/xp + 1 + px + · · · , 1/xp2 + 1/xp + · · · , . . .
ύʔϑΣΫτΠυۭؒ ύʔϑΣΫτΠυۭؒΛ͏ͱίϗϞϩδʔ ͕ௐ͘͢ͳΔɻ
pਐHodgeཧ ίϗϞϩδʔͷൺֱఆཧ Hi ´ et (X, Fp ) ⊗ OC
/p ∼ = Hi ´ et (X, O+ X /p) Hi ´ et (X, Qp ) ⊗Qp BdR ∼ = Hi dR (X0 ) ⊗k BdR
pਐपظࣸ૾ ϗοδཧͷp ਐ൛ πHT : S∗ Kp → F ପԁۂઢͷ
ϞδϡϥΠ ίϗϞϩδʔ ͷൺֱ
LanglandsରԠ ΨϩΞදݱ อܕදݱ ପԁۂઢ อܕܗࣜ ▶ ࠨ͖ɿΨϩΞදݱͷߏ ΞΠώϥʔ-ࢤଜ etc ▶
ӈ͖ɿΨϩΞදݱͷอܕੑ ςΠϥʔ-ϫΠϧζ etc
LanglandsରԠ ΨϩΞදݱ อܕදݱ 1. ίϗϞϩδʔͷൺֱఆཧ 2. ہॴରশۭؒͷp-torsionίϗϞϩδʔ͕ ௐΒΕΔ 3. ΑΓ͍อܕදݱ͔ΒΨϩΞදݱͷߏ
4. ΨϩΞදݱͷอܕੑʹԠ༻
৽͍͠ίϗϞϩδʔཧ ίϗϞϩδʔΛ౷Ұతʹѻ͍͍ͨ ʁ Τλʔϧ ΫϦε λϦϯ υϥʔϜ
৽͍͠ίϗϞϩδʔཧ ϥϯάϥϯζରԠͷݚڀ͔Β γτΡΧʁ Τλʔϧ ΫϦε λϦϯ υϥʔϜ