Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
パーフェクトイド空間とコホモロジー
Search
Naoya Umezaki
October 06, 2018
0
1.6k
パーフェクトイド空間とコホモロジー
MATHPOWER2018での講演。フィールズ賞受賞者Peter Scholzeの業績紹介。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
0
460
ミケル点とべズーの定理
unaoya
0
800
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
620
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
800
Egisonパターンマッチによる彩色
unaoya
1
570
関数等式と双対性
unaoya
1
740
直交多項式と表現論
unaoya
0
830
導来代数幾何入門
unaoya
0
940
Featured
See All Featured
Designing on Purpose - Digital PM Summit 2013
jponch
116
7k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Agile that works and the tools we love
rasmusluckow
328
21k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
28
4.4k
KATA
mclloyd
29
14k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
RailsConf 2023
tenderlove
29
940
Building Applications with DynamoDB
mza
91
6.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Pragmatic Product Professional
lauravandoore
32
6.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Transcript
ύʔϑΣΫτΠυۭؒͱ ίϗϞϩδʔ Peter Scholzeͷۀհ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
डཧ༝ p ਐͰͷزԿͷݚڀ ▶ ύʔϑΣΫτΠυۭؒͷཧ ▶ ϥϯάϥϯζରԠͷԠ༻ ▶ ৽͍͠ίϗϞϩδʔཧ
pਐ ༗ཧ͔Β࣮3.14159265 · · · ༗ཧ͔Βp ਐ · · ·
245123 = 3+2p+1p2 +5p3 +4p4 +2p5 +· · ·
pਐ ▶ ࣮Ͱ0.9999 · · · = 1 ▶ p
= 2ͷͱ͖ɺpਐͰ· · · 111111 = −1
زԿֶ ଟ߲ࣜΛߟ͑Δͱਤܗ͕ܾ·Δɻ ▶ ԁx2 + y2 = 1 ▶ ପԁۂઢy2
= x3 + x ▶ ϑΣϧϚʔۂઢxn + yn = 1
ίϗϞϩδʔ ݀ͷΛ͑Δɻਤܗͷྨ͕Ͱ͖Δɻ H1 sing (X) = H1 dR (X) =
R2
ίϗϞϩδʔ ༷ʑͳίϗϞϩδʔ͕͋Δɻ υϥʔϜ ίϗϞϩδʔ ಛҟ ίϗϞϩδʔ ؔ ඍํఔࣜ ۭؒͷதͷ ਤܗͷมܗ
ίϗϞϩδʔͷൺֱ υϥʔϜ ίϗϞϩδʔ ಛҟ ίϗϞϩδʔ ϗοδ ίϗϞϩδʔ ίϗϞϩδʔͷൺֱ͔Βपظ͕ग़ͯ͘Δɻ
ͱίϗϞϩδʔ ▶ ੲ͔Βߟ͑ΒΕ͍͍ͯͨΖΜͳ͕ί ϗϞϩδʔΛͬͯදݱͰ͖Δɻ ▶ ʹԠ༻ʢϦʔϚϯ༧ͷྨࣅʣ ▶ ίϗϞϩδʔΛௐΕ৭ʑΘ͔Δʂ
ύʔϑΣΫτΠυۭؒ ▶ زԿଟ߲ࣜx, x2 + ax + b, . .
. ▶ ղੳزԿऩଋႈڃx + px + p2x2 + · · · ▶ ύʔϑΣΫτΠυۭؒ 1/x + p + p2x + · · · , 1/xp + 1 + px + · · · , 1/xp2 + 1/xp + · · · , . . .
ύʔϑΣΫτΠυۭؒ ύʔϑΣΫτΠυۭؒΛ͏ͱίϗϞϩδʔ ͕ௐ͘͢ͳΔɻ
pਐHodgeཧ ίϗϞϩδʔͷൺֱఆཧ Hi ´ et (X, Fp ) ⊗ OC
/p ∼ = Hi ´ et (X, O+ X /p) Hi ´ et (X, Qp ) ⊗Qp BdR ∼ = Hi dR (X0 ) ⊗k BdR
pਐपظࣸ૾ ϗοδཧͷp ਐ൛ πHT : S∗ Kp → F ପԁۂઢͷ
ϞδϡϥΠ ίϗϞϩδʔ ͷൺֱ
LanglandsରԠ ΨϩΞදݱ อܕදݱ ପԁۂઢ อܕܗࣜ ▶ ࠨ͖ɿΨϩΞදݱͷߏ ΞΠώϥʔ-ࢤଜ etc ▶
ӈ͖ɿΨϩΞදݱͷอܕੑ ςΠϥʔ-ϫΠϧζ etc
LanglandsରԠ ΨϩΞදݱ อܕදݱ 1. ίϗϞϩδʔͷൺֱఆཧ 2. ہॴରশۭؒͷp-torsionίϗϞϩδʔ͕ ௐΒΕΔ 3. ΑΓ͍อܕදݱ͔ΒΨϩΞදݱͷߏ
4. ΨϩΞදݱͷอܕੑʹԠ༻
৽͍͠ίϗϞϩδʔཧ ίϗϞϩδʔΛ౷Ұతʹѻ͍͍ͨ ʁ Τλʔϧ ΫϦε λϦϯ υϥʔϜ
৽͍͠ίϗϞϩδʔཧ ϥϯάϥϯζରԠͷݚڀ͔Β γτΡΧʁ Τλʔϧ ΫϦε λϦϯ υϥʔϜ