Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文ゼミ】SSE-PT: Sequential Recommendation Via Per...
Search
Yamato Hara
October 07, 2021
Research
0
70
【論文ゼミ】SSE-PT: Sequential Recommendation Via Personalized Transformer
計算知能・マルチメディア研究室 論文ゼミ
紹介論文:
https://dl.acm.org/doi/10.1145/3383313.3412258
Yamato Hara
October 07, 2021
Tweet
Share
More Decks by Yamato Hara
See All by Yamato Hara
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
yamato0811
1
300
【論文ゼミ】Personalized Transfer of User Preferences for Cross-domain Recommendation
yamato0811
0
210
Other Decks in Research
See All in Research
ダイナミックプライシング とその実例
skmr2348
3
530
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.2k
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.4k
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
190
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.7k
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
130
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
360
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
480
Weekly AI Agents News! 9月号 論文のアーカイブ
masatoto
1
170
20240918 交通くまもとーく 未来の鉄道網編(太田恒平)
trafficbrain
0
440
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
23
5.4k
Whoisの闇
hirachan
3
230
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
244
12k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Speed Design
sergeychernyshev
25
740
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.1k
Transcript
論⽂紹介 原 弥⿇⼈ 0 SSE-PT: Sequential Recommendation Via Personalized Transformer
⽬次 • 論⽂の概要 • どんな分野か • 先⾏研究 • 提案⼿法 •
実験 • まとめ・疑問点 1
論⽂の概要 2 論⽂情報 タイトル : SSE-PT: Sequential Recommendation Via Personalized
Transformer 引⽤数 : 22回 学会 : RecSys September 22-26, 2020 レコメンド分野のトップカンファレンス 著者情報 著者 : Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack 所属 : University of California, Davis University of California, Los Angles
論⽂の概要 3 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
どんな分野か 4 Recommendationの種類 • General Recommendation • Graph Recommendation •
Knowledge Aware Recommendation • Sequential Recommendation ユーザーの好み・嗜好は固定ではなく変化するものという仮定
どんな分野か 5 猿 も ⽊ から 落ちる Sequential Recommendation NLP
次単語予測
どんな分野か 6 ⾃然⾔語処理の発展に伴うレコメンドシステムの遷移
先⾏研究 7 Kang, Wang-Cheng, and Julian McAuley. "Self-attentive sequential recommendation."
ICDM2018 SASRec Sequential RecommendationにTransformerを適⽤したモデル ユーザーにパーソナライズされていない︕ Transformer
提案⼿法 8 SSE-PT ユーザーベクトルを追加︕
提案⼿法 9 Embedding Layer 𝑣 ∶ アイテム 𝑢 ∶ ユーザー
ベクトル化 ⻑さ𝑇に満たないときはpaddingとして𝟎で埋める
提案⼿法 10 Transformer Encoder
提案⼿法 11 Transformer Encoder ⼊⼒ 出⼒
提案⼿法 12 Transformer Encoder • Wは学習によって変化していく • Wによって柔軟に
提案⼿法 13 Transformer Encoder ⼆層のニューラルネットワーク
提案⼿法 14 Prediction Layer ︓Transformer encoderの最後の タイムスタンプにおけるoutput : 時間 𝑡
でユーザー 𝑖 がアイテム 𝑙 を選ぶ確率 : loss関数 次に選んだであろうアイテム Log(1) = 0 Log(1-0) = 0 類似度
提案⼿法 15 SSE-PT ベクトル化 前後関係を考慮したベクトル
提案⼿法 16 Stochastic Shared Embeddings 2019年に同著者らが発表した⼿法 Wu, Liwei, et al.
"Stochastic shared embeddings: Data-driven regularization of embedding layers.” (2019) ある⼀定の確率でエンベディングを他のものと置き換える
実験 18 環境 CPU : 40-core Intel Xeon E5-2630 v4
@2.20GHz GPU : GTX 1080 データセット • Steam dataset • Movielens1M, Movielens10M • Amazon product review dataset(Beauty, Games) 評価指標 • Recall ・・・ユーザが実際に嗜好したアイテムのうちレコメンドリストでカバーした割合 • NDCG・・・おすすめ順の適合度を合計し,正規化したもの
実験 19 SSE-PTを⻑いシーケンスでも対応できるようにした版 (性能⽐較)
実験 20 (アテンションの可視化)
実験 21 (Training Speed)
疑問点 22 • 未知のユーザーが来たら推論がうまくいかないのではないか • Positive itemとnegative itemのリストはどのように作成しているのか
まとめ 23 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
Appendix 24