Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文ゼミ】SSE-PT: Sequential Recommendation Via Per...
Search
Yamato Hara
October 07, 2021
Research
0
130
【論文ゼミ】SSE-PT: Sequential Recommendation Via Personalized Transformer
計算知能・マルチメディア研究室 論文ゼミ
紹介論文:
https://dl.acm.org/doi/10.1145/3383313.3412258
Yamato Hara
October 07, 2021
Tweet
Share
More Decks by Yamato Hara
See All by Yamato Hara
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
yamato0811
1
340
【論文ゼミ】Personalized Transfer of User Preferences for Cross-domain Recommendation
yamato0811
0
290
Other Decks in Research
See All in Research
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
230
数理最適化に基づく制御
mickey_kubo
6
720
データサイエンティストの採用に関するアンケート
datascientistsociety
PRO
0
1.2k
LLM-as-a-Judge: 文章をLLMで評価する@教育機関DXシンポ
k141303
3
870
SSII2025 [SS1] レンズレスカメラ
ssii
PRO
2
1k
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
300
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
250
【緊急警告】日本の未来設計図 ~沈没か、再生か。国民と断行するラストチャンス~
yuutakasan
0
150
大規模な2値整数計画問題に対する 効率的な重み付き局所探索法
mickey_kubo
1
330
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
880
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
9
4.1k
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
460
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
70
11k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
[RailsConf 2023] Rails as a piece of cake
palkan
56
5.8k
Six Lessons from altMBA
skipperchong
28
4k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Gamification - CAS2011
davidbonilla
81
5.4k
Git: the NoSQL Database
bkeepers
PRO
431
65k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
890
Done Done
chrislema
185
16k
Transcript
論⽂紹介 原 弥⿇⼈ 0 SSE-PT: Sequential Recommendation Via Personalized Transformer
⽬次 • 論⽂の概要 • どんな分野か • 先⾏研究 • 提案⼿法 •
実験 • まとめ・疑問点 1
論⽂の概要 2 論⽂情報 タイトル : SSE-PT: Sequential Recommendation Via Personalized
Transformer 引⽤数 : 22回 学会 : RecSys September 22-26, 2020 レコメンド分野のトップカンファレンス 著者情報 著者 : Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack 所属 : University of California, Davis University of California, Los Angles
論⽂の概要 3 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
どんな分野か 4 Recommendationの種類 • General Recommendation • Graph Recommendation •
Knowledge Aware Recommendation • Sequential Recommendation ユーザーの好み・嗜好は固定ではなく変化するものという仮定
どんな分野か 5 猿 も ⽊ から 落ちる Sequential Recommendation NLP
次単語予測
どんな分野か 6 ⾃然⾔語処理の発展に伴うレコメンドシステムの遷移
先⾏研究 7 Kang, Wang-Cheng, and Julian McAuley. "Self-attentive sequential recommendation."
ICDM2018 SASRec Sequential RecommendationにTransformerを適⽤したモデル ユーザーにパーソナライズされていない︕ Transformer
提案⼿法 8 SSE-PT ユーザーベクトルを追加︕
提案⼿法 9 Embedding Layer 𝑣 ∶ アイテム 𝑢 ∶ ユーザー
ベクトル化 ⻑さ𝑇に満たないときはpaddingとして𝟎で埋める
提案⼿法 10 Transformer Encoder
提案⼿法 11 Transformer Encoder ⼊⼒ 出⼒
提案⼿法 12 Transformer Encoder • Wは学習によって変化していく • Wによって柔軟に
提案⼿法 13 Transformer Encoder ⼆層のニューラルネットワーク
提案⼿法 14 Prediction Layer ︓Transformer encoderの最後の タイムスタンプにおけるoutput : 時間 𝑡
でユーザー 𝑖 がアイテム 𝑙 を選ぶ確率 : loss関数 次に選んだであろうアイテム Log(1) = 0 Log(1-0) = 0 類似度
提案⼿法 15 SSE-PT ベクトル化 前後関係を考慮したベクトル
提案⼿法 16 Stochastic Shared Embeddings 2019年に同著者らが発表した⼿法 Wu, Liwei, et al.
"Stochastic shared embeddings: Data-driven regularization of embedding layers.” (2019) ある⼀定の確率でエンベディングを他のものと置き換える
実験 18 環境 CPU : 40-core Intel Xeon E5-2630 v4
@2.20GHz GPU : GTX 1080 データセット • Steam dataset • Movielens1M, Movielens10M • Amazon product review dataset(Beauty, Games) 評価指標 • Recall ・・・ユーザが実際に嗜好したアイテムのうちレコメンドリストでカバーした割合 • NDCG・・・おすすめ順の適合度を合計し,正規化したもの
実験 19 SSE-PTを⻑いシーケンスでも対応できるようにした版 (性能⽐較)
実験 20 (アテンションの可視化)
実験 21 (Training Speed)
疑問点 22 • 未知のユーザーが来たら推論がうまくいかないのではないか • Positive itemとnegative itemのリストはどのように作成しているのか
まとめ 23 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
Appendix 24