Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文ゼミ】SSE-PT: Sequential Recommendation Via Per...
Search
Yamato Hara
October 07, 2021
Research
0
150
【論文ゼミ】SSE-PT: Sequential Recommendation Via Personalized Transformer
計算知能・マルチメディア研究室 論文ゼミ
紹介論文:
https://dl.acm.org/doi/10.1145/3383313.3412258
Yamato Hara
October 07, 2021
Tweet
Share
More Decks by Yamato Hara
See All by Yamato Hara
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
yamato0811
1
360
【論文ゼミ】Personalized Transfer of User Preferences for Cross-domain Recommendation
yamato0811
0
340
Other Decks in Research
See All in Research
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
110
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
380
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
3
1k
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
380
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
510
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
590
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
540
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.3k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
540
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.2k
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
180
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
0
26
A Soul's Torment
seathinner
1
2.1k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
47k
Being A Developer After 40
akosma
91
590k
Side Projects
sachag
455
43k
Practical Orchestrator
shlominoach
190
11k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
130
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
860
Transcript
論⽂紹介 原 弥⿇⼈ 0 SSE-PT: Sequential Recommendation Via Personalized Transformer
⽬次 • 論⽂の概要 • どんな分野か • 先⾏研究 • 提案⼿法 •
実験 • まとめ・疑問点 1
論⽂の概要 2 論⽂情報 タイトル : SSE-PT: Sequential Recommendation Via Personalized
Transformer 引⽤数 : 22回 学会 : RecSys September 22-26, 2020 レコメンド分野のトップカンファレンス 著者情報 著者 : Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack 所属 : University of California, Davis University of California, Los Angles
論⽂の概要 3 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
どんな分野か 4 Recommendationの種類 • General Recommendation • Graph Recommendation •
Knowledge Aware Recommendation • Sequential Recommendation ユーザーの好み・嗜好は固定ではなく変化するものという仮定
どんな分野か 5 猿 も ⽊ から 落ちる Sequential Recommendation NLP
次単語予測
どんな分野か 6 ⾃然⾔語処理の発展に伴うレコメンドシステムの遷移
先⾏研究 7 Kang, Wang-Cheng, and Julian McAuley. "Self-attentive sequential recommendation."
ICDM2018 SASRec Sequential RecommendationにTransformerを適⽤したモデル ユーザーにパーソナライズされていない︕ Transformer
提案⼿法 8 SSE-PT ユーザーベクトルを追加︕
提案⼿法 9 Embedding Layer 𝑣 ∶ アイテム 𝑢 ∶ ユーザー
ベクトル化 ⻑さ𝑇に満たないときはpaddingとして𝟎で埋める
提案⼿法 10 Transformer Encoder
提案⼿法 11 Transformer Encoder ⼊⼒ 出⼒
提案⼿法 12 Transformer Encoder • Wは学習によって変化していく • Wによって柔軟に
提案⼿法 13 Transformer Encoder ⼆層のニューラルネットワーク
提案⼿法 14 Prediction Layer ︓Transformer encoderの最後の タイムスタンプにおけるoutput : 時間 𝑡
でユーザー 𝑖 がアイテム 𝑙 を選ぶ確率 : loss関数 次に選んだであろうアイテム Log(1) = 0 Log(1-0) = 0 類似度
提案⼿法 15 SSE-PT ベクトル化 前後関係を考慮したベクトル
提案⼿法 16 Stochastic Shared Embeddings 2019年に同著者らが発表した⼿法 Wu, Liwei, et al.
"Stochastic shared embeddings: Data-driven regularization of embedding layers.” (2019) ある⼀定の確率でエンベディングを他のものと置き換える
実験 18 環境 CPU : 40-core Intel Xeon E5-2630 v4
@2.20GHz GPU : GTX 1080 データセット • Steam dataset • Movielens1M, Movielens10M • Amazon product review dataset(Beauty, Games) 評価指標 • Recall ・・・ユーザが実際に嗜好したアイテムのうちレコメンドリストでカバーした割合 • NDCG・・・おすすめ順の適合度を合計し,正規化したもの
実験 19 SSE-PTを⻑いシーケンスでも対応できるようにした版 (性能⽐較)
実験 20 (アテンションの可視化)
実験 21 (Training Speed)
疑問点 22 • 未知のユーザーが来たら推論がうまくいかないのではないか • Positive itemとnegative itemのリストはどのように作成しているのか
まとめ 23 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
Appendix 24