Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【IR Reading2022秋】 CPFair: Personalized Consumer...
Search
Yamato Hara
November 11, 2022
Research
1
320
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
IR Reading 2022秋 論文紹介
紹介論文:
https://arxiv.org/abs/2204.08085
Yamato Hara
November 11, 2022
Tweet
Share
More Decks by Yamato Hara
See All by Yamato Hara
【論文ゼミ】Personalized Transfer of User Preferences for Cross-domain Recommendation
yamato0811
0
230
【論文ゼミ】SSE-PT: Sequential Recommendation Via Personalized Transformer
yamato0811
0
84
Other Decks in Research
See All in Research
BtoB プロダクトにおけるインサイトマネジメントの必要性 現場ドリブンなカミナシがインサイトマネジメントに取り組むワケ / Why field-driven Kaminashi is working on insight management
kaminashi
1
360
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
200
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.7k
SATソルバを用いた複数パス間の制約を満足する経路計算手法 / A Path Calculation Method Satisfying Constraints between Multiple Paths Using SAT Solver
nttcom
0
120
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
160
Poster: Feasibility of Runtime-Neutral Wasm Instrumentation for Edge-Cloud Workload Handover
chikuwait
0
430
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
250
Vision Language Modelと完全自動運転AIの最新動向
tsubasashi
1
310
ことばの意味を計算するしくみ
verypluming
10
2k
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
470
IM2024
mamoruk
0
250
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
270
Featured
See All Featured
Bash Introduction
62gerente
611
210k
The Cost Of JavaScript in 2023
addyosmani
48
7.6k
Designing Experiences People Love
moore
141
23k
Navigating Team Friction
lara
184
15k
KATA
mclloyd
29
14k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.4k
GitHub's CSS Performance
jonrohan
1030
460k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
For a Future-Friendly Web
brad_frost
176
9.6k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The Language of Interfaces
destraynor
157
24k
Transcript
原 弥⿇⼈ CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems IR Reading 2022秋 2022/11/12 筑波⼤学 Naghiaei, Mohammadmehdi, Hossein A. Rahmani, and Yashar Deldjoo. SIGIR2022
論⽂の概要 l 別々に扱われることが多かったアイテムとユーザーの公平性を 同時に最適化することの重要性を指摘 l プラットフォーム上の消費者、提供者の両⽅の公平性を最適化 (CP-fairness)を⾏う再ランキング⼿法を提案 l 8つのデータセットでの実験の結果、消費者-提供者の公平性を ⾼めつつ精度を向上させることを実証
2
CP-Fairnessとは 3 消費者 プラットフォームの 推薦システム 提供者 消費者・提供者が望むこと 良いアイテムを⾒つけたい︕ ⾃分のアイテムを⾒つけてほしい︕
CP-Fairnessとは 4 消費者 プラットフォームの 推薦システム 提供者 実際には ⼀部の提供者のアイテム だけ表⽰されやすい ⼀部のユーザーが良い
推薦を受けやすい 消費者・提供者の両⽅を公平にしたい︕ バイアスの発⽣
公平性を考慮しないモデルの場合 5 アクティブなユーザーが⾮アクティブ なユーザーよりもはるかに⾼い性能 消費者サイド 提供者サイド Short-head(⼈気)アイテムがLong-tail(不⼈気) アイテムより表⽰割合がはるかに⾼い 消費者・提供者の両⽅で不公平な状況が発⽣
提案⼿法 6 公平性指標 : 消費者 提供者 ・・・ Activeなユーザーグループ ・・・ Inactiveなユーザーグループ
Binaryの推薦⾏列 精度(nDCG, Recallなど) ・・・ 表⽰回数の多いアイテムグループ ・・・ 表⽰回数の少ないアイテムグループ アイテムの表⽰回数 値が⼩さいほど公平
提案⼿法 7 再ランキングアルゴリズム 𝒊𝟏 𝒊𝟐 ・・・ 𝒊𝑲 𝒖𝟏 1 1
・・・ 0 𝒖𝟐 0 0 ・・・ 1 ・・・ ・・・ ・・・ 0 𝒖𝒏 0 0 0 1 最適化問題 制約条件 消費者の公平性 提供者の公平性 式全体を最⼤化する2値⾏列𝑨を求める ⾏列𝑨のイメージ 全体の満⾜度最⼤化 (通常の推薦) 𝑆!" : ユーザーとアイテムの関連度スコア 𝜆# , 𝜆$ : 公平性を制御するハイパーパラメータ 0 ≤ 𝜆! , 𝜆" ≤ 1 推薦モデルによって事前に取得 貪欲法を⽤いることで多項式時間で解くことが可能
実験設定 8 データセット ベースライン • PF • WMF • NueMF
• VAECF グループ分け : アクティビティ上位5%をactive、残りをinactive ⼈気アイテム上位20%をshort-head、残りのアイ テムをlong-tail : 評価指標 𝐷𝐶𝐹 : 𝐷𝑃𝐹 : 𝑚𝐶𝑃𝐹 : 消費者の公平性 提供者の公平性 両者の公平性 𝑤 = 0.5 ハイパーパラメータ
結果 9 ※ スペースの都合上Epinionのみ 精度を犠牲にせずに両者の公平性を改善 両者の公平性 精度 両者の公平性
まとめ 10 l 消費者・提供者の両⽅の視点から公平性を考慮した再ランキング ⼿法を提案 l 推薦精度を低下させることなく公平性を保つことができる CPFair: Personalized Consumer
and Producer Fairness Re-ranking for Recommender Systems
Appendix
公平性に関する研究 12 消費者・提供者の両⽅ 公平な推薦システムに関する研究の種類 公平性の研究で消費者・提供者両⽅着⽬した 研究は少ない (改善アルゴリズムに関してはわずか3.6%) 消費者 提供者
Fair Re-ranking 13 • この研究では採⽤しない(紹介のみ) • 0 ≤ 𝐴!" ≤
1と制約を緩和することで 多項式時間で解くことが可能 アルゴリズム1 𝑨∗を求める
Fair Re-ranking Greedy 14 アルゴリズム2 • この研究で採⽤ • 最悪計算量は𝑂(𝑛 ×
𝑁) 公平なレコメンドリスト𝑳𝑲 𝑭 (𝒖)を求める
結果 15 • 推薦アルゴリズムによってバ イアスを増幅しやすいものが ある • P-fairnessの最適化はmCPFを 減少させやすい •
CP-fairnessアルゴリズムは精 度を落とさず公平性を実現で きる
全データセットでの結果 16 推薦精度とmCPF nDCG@10 全データセットにおいて同等の精度と⾼い公平性
パラメータ𝜆の影響 17 𝜆が⼤きくなる → 公平になるが精度の低下 𝜆が⼩さくなる → 公平性が低下するが精度が増加 トレードオフ 𝜆#
: 消費者 𝜆$ : 提供者 「精度中⼼」の挙動 「露出中⼼」の挙動 アイテムの露出はあまり変わらない 精度とアイテムの露出両⽅に影響