Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
関数方程式のあやしい世界
Search
Yoriyuki Yamagata
April 13, 2019
Science
0
610
関数方程式のあやしい世界
関数方程式の闇
Yoriyuki Yamagata
April 13, 2019
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
科学の虚構主義的解釈と祖先以前性の問題
yoriyuki
1
200
5分で分る直観主義数学
yoriyuki
0
530
算道 − 古代・中世日本の数学 -
yoriyuki
1
600
指数関数は存在しないという話
yoriyuki
0
360
Other Decks in Science
See All in Science
Machine Learning for Materials (Lecture 8)
aronwalsh
0
410
2024-06-16-pydata_london
sofievl
0
530
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
150
JSol'Ex : traitement d'images solaires en Java
melix
0
110
ベイズのはなし
techmathproject
0
310
240510 COGNAC LabChat
kazh
0
140
LIMEを用いた判断根拠の可視化
kentaitakura
0
340
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_ポスター版
hayataka88
0
130
『データ可視化学入門』を PythonからRに翻訳した話
bob3bob3
1
500
Презентация программы бакалавриата СПбГУ "Искусственный интеллект и наука о данных"
dscs
0
740
Online Feedback Optimization
floriandoerfler
0
330
AI科学の何が“哲学”の問題になるのか ~問いマッピングの試み~
rmaruy
1
2.3k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.2k
The Invisible Side of Design
smashingmag
298
50k
Side Projects
sachag
452
42k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
GitHub's CSS Performance
jonrohan
1030
460k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
140
Producing Creativity
orderedlist
PRO
341
39k
Transcript
͜ͷΑ͏ͳfΛͯ͢ٻΊΑ f(x) = x͕Ұͭͷղ͕ͩ… ؔํఔࣜ f(x + y) = f(x)
+ f(y) f(1) = 1
ղ ଞʹղʁ f(x) + f(y) = f(x + y +
2f(xy)) f: ℝ≥0 → ℝ≥0 f(x) = 0 and f(x) = x
ఆཧ f͕࿈ଓͳΒɺղ f(x) = 0 ·ͨ f(x) = x
ิ̍ f͕୯ࣹͳΒf(x)=√x f(x) + f(y) + f(1) = f(x +
y + 1 + 2f(y) + 2f(xy + x + 2xf(y)) f(x) + f(y) + f(1) = f(x + y + 1 + 2f(xy) + 2f(x) + 2f(y)) ূ໌ɿ f͕୯ࣹΑΓ f(xy + x + 2xf(y)) = f(xy) + f(x) = f(xy + x + 2f(x2y)) ∴ f(x2y) = xf(y) ∴ f(x) = f(1) x
ิ̎ f(x)x͕૿Ճͨ͠ͱ͖ݮগ͠ͳ͍ t ↦ t + 2f(xt) ҙͷਖ਼ͷ࣮Λͭ ূ໌ɿ Αͬͯy>xʹରͯ͋͠Δt͕ଘࡏͯ͠
f(y) = f(x + t + 2f(xt)) = f(x) + f(t) ≥ f(x)
ఆཧͷূ໌ ͋͠ΔaͰf(a) = 0ͳΒ f(2a) ≤ f(2a + 2f(a2)) =
2f(a) = 0 fݮগ͠ͳ͍͔Βɺf߃తʹ̌ɻ ͦ͏Ͱͳ͍ͱ͢Δɻิ̎ͷূ໌ͱಉ༷ʹ ҙͷy>xʹ͍ͭͯɺ͋Δt͕͋ͬͯy-x = t + f(tx) f(y) = f(x + t + f(tx)) = f(x) + f(t) > f(x) Αͬͯf୯ௐ૿େɻิ̍ΑΓ
ະղܾ f͕ҰൠͷؔͩͬͨΒʁ