Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
関数方程式のあやしい世界
Search
Yoriyuki Yamagata
April 13, 2019
Science
0
600
関数方程式のあやしい世界
関数方程式の闇
Yoriyuki Yamagata
April 13, 2019
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
科学の虚構主義的解釈と祖先以前性の問題
yoriyuki
1
200
5分で分る直観主義数学
yoriyuki
0
530
算道 − 古代・中世日本の数学 -
yoriyuki
1
590
指数関数は存在しないという話
yoriyuki
0
360
Other Decks in Science
See All in Science
20240127_OpenRadiossエアバッグ解析
kamakiri1225
0
260
Science of Scienceおよび科学計量学に関する研究論文の俯瞰可視化_LT版
hayataka88
0
910
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
140
小杉考司(専修大学)
kosugitti
2
550
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
140
Raccoon Roundworm
uni_of_nomi
0
160
Machine Learning for Materials (Lecture 6)
aronwalsh
0
500
位相的データ解析とその応用例
brainpadpr
1
550
証明支援系LEANに入門しよう
unaoya
0
320
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
510
Coqで選択公理を形式化してみた
soukouki
0
180
ベイズ最適化をゼロから
brainpadpr
2
740
Featured
See All Featured
BBQ
matthewcrist
85
9.3k
Side Projects
sachag
452
42k
GitHub's CSS Performance
jonrohan
1030
460k
How STYLIGHT went responsive
nonsquared
95
5.2k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
The Power of CSS Pseudo Elements
geoffreycrofte
72
5.3k
It's Worth the Effort
3n
183
27k
We Have a Design System, Now What?
morganepeng
50
7.2k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
504
140k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
RailsConf 2023
tenderlove
29
880
Transcript
͜ͷΑ͏ͳfΛͯ͢ٻΊΑ f(x) = x͕Ұͭͷղ͕ͩ… ؔํఔࣜ f(x + y) = f(x)
+ f(y) f(1) = 1
ղ ଞʹղʁ f(x) + f(y) = f(x + y +
2f(xy)) f: ℝ≥0 → ℝ≥0 f(x) = 0 and f(x) = x
ఆཧ f͕࿈ଓͳΒɺղ f(x) = 0 ·ͨ f(x) = x
ิ̍ f͕୯ࣹͳΒf(x)=√x f(x) + f(y) + f(1) = f(x +
y + 1 + 2f(y) + 2f(xy + x + 2xf(y)) f(x) + f(y) + f(1) = f(x + y + 1 + 2f(xy) + 2f(x) + 2f(y)) ূ໌ɿ f͕୯ࣹΑΓ f(xy + x + 2xf(y)) = f(xy) + f(x) = f(xy + x + 2f(x2y)) ∴ f(x2y) = xf(y) ∴ f(x) = f(1) x
ิ̎ f(x)x͕૿Ճͨ͠ͱ͖ݮগ͠ͳ͍ t ↦ t + 2f(xt) ҙͷਖ਼ͷ࣮Λͭ ূ໌ɿ Αͬͯy>xʹରͯ͋͠Δt͕ଘࡏͯ͠
f(y) = f(x + t + 2f(xt)) = f(x) + f(t) ≥ f(x)
ఆཧͷূ໌ ͋͠ΔaͰf(a) = 0ͳΒ f(2a) ≤ f(2a + 2f(a2)) =
2f(a) = 0 fݮগ͠ͳ͍͔Βɺf߃తʹ̌ɻ ͦ͏Ͱͳ͍ͱ͢Δɻิ̎ͷূ໌ͱಉ༷ʹ ҙͷy>xʹ͍ͭͯɺ͋Δt͕͋ͬͯy-x = t + f(tx) f(y) = f(x + t + f(tx)) = f(x) + f(t) > f(x) Αͬͯf୯ௐ૿େɻิ̍ΑΓ
ະղܾ f͕ҰൠͷؔͩͬͨΒʁ