Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
関数方程式のあやしい世界
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yoriyuki Yamagata
April 13, 2019
Science
0
790
関数方程式のあやしい世界
関数方程式の闇
Yoriyuki Yamagata
April 13, 2019
Tweet
Share
More Decks by Yoriyuki Yamagata
See All by Yoriyuki Yamagata
科学の虚構主義的解釈と祖先以前性の問題
yoriyuki
1
250
5分で分る直観主義数学
yoriyuki
0
580
算道 − 古代・中世日本の数学 -
yoriyuki
1
780
指数関数は存在しないという話
yoriyuki
0
400
Other Decks in Science
See All in Science
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
150
Lean4による汎化誤差評価の形式化
milano0017
1
440
Distributional Regression
tackyas
0
350
HajimetenoLT vol.17
hashimoto_kei
1
180
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
180
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
1.1k
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
190
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.5k
HDC tutorial
michielstock
1
420
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.4k
Navigating Weather and Climate Data
rabernat
0
120
Hakonwa-Quaternion
hiranabe
1
180
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
11
840
AI: The stuff that nobody shows you
jnunemaker
PRO
2
300
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Bash Introduction
62gerente
615
210k
Context Engineering - Making Every Token Count
addyosmani
9
670
Optimizing for Happiness
mojombo
379
71k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
930
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
60
Navigating the moral maze — ethical principles for Al-driven product design
skipperchong
2
260
Transcript
͜ͷΑ͏ͳfΛͯ͢ٻΊΑ f(x) = x͕Ұͭͷղ͕ͩ… ؔํఔࣜ f(x + y) = f(x)
+ f(y) f(1) = 1
ղ ଞʹղʁ f(x) + f(y) = f(x + y +
2f(xy)) f: ℝ≥0 → ℝ≥0 f(x) = 0 and f(x) = x
ఆཧ f͕࿈ଓͳΒɺղ f(x) = 0 ·ͨ f(x) = x
ิ̍ f͕୯ࣹͳΒf(x)=√x f(x) + f(y) + f(1) = f(x +
y + 1 + 2f(y) + 2f(xy + x + 2xf(y)) f(x) + f(y) + f(1) = f(x + y + 1 + 2f(xy) + 2f(x) + 2f(y)) ূ໌ɿ f͕୯ࣹΑΓ f(xy + x + 2xf(y)) = f(xy) + f(x) = f(xy + x + 2f(x2y)) ∴ f(x2y) = xf(y) ∴ f(x) = f(1) x
ิ̎ f(x)x͕૿Ճͨ͠ͱ͖ݮগ͠ͳ͍ t ↦ t + 2f(xt) ҙͷਖ਼ͷ࣮Λͭ ূ໌ɿ Αͬͯy>xʹରͯ͋͠Δt͕ଘࡏͯ͠
f(y) = f(x + t + 2f(xt)) = f(x) + f(t) ≥ f(x)
ఆཧͷূ໌ ͋͠ΔaͰf(a) = 0ͳΒ f(2a) ≤ f(2a + 2f(a2)) =
2f(a) = 0 fݮগ͠ͳ͍͔Βɺf߃తʹ̌ɻ ͦ͏Ͱͳ͍ͱ͢Δɻิ̎ͷূ໌ͱಉ༷ʹ ҙͷy>xʹ͍ͭͯɺ͋Δt͕͋ͬͯy-x = t + f(tx) f(y) = f(x + t + f(tx)) = f(x) + f(t) > f(x) Αͬͯf୯ௐ૿େɻิ̍ΑΓ
ະղܾ f͕ҰൠͷؔͩͬͨΒʁ