Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンティストに同じクエリは二度も通じぬ
Search
Takahiro Yoshinaga
December 07, 2019
Technology
2
960
データサイエンティストに同じクエリは二度も通じぬ
Presentation in Japan.R 2019
Takahiro Yoshinaga
December 07, 2019
Tweet
Share
More Decks by Takahiro Yoshinaga
See All by Takahiro Yoshinaga
ビッグデータビジネスによる継続的な価値創造と人材育成
yoshinaga0106
0
120
社内LINE公式アカウント メッセージ送りすぎ問題を データサイエンスで解決する
yoshinaga0106
0
220
[ICML2021 論文読み会] A General Framework For Detecting Anomalous Inputs to DNN Classifiers
yoshinaga0106
0
1.4k
Data Science API
yoshinaga0106
5
2.7k
Anomaly Detection in KDD2019
yoshinaga0106
1
380
Data Engineering & Data Analysis #8
yoshinaga0106
1
2.5k
Conversion Prediction Using Multi-task Conditional Attention Networks to Support the Creation of Effective Ad Creatives
yoshinaga0106
0
1.5k
Introduction of Clumpiness
yoshinaga0106
0
150
データにまつわる苦労話から考えるデータ活用
yoshinaga0106
0
150
Other Decks in Technology
See All in Technology
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
logica0419
1
420
LLM時代にデータエンジニアの役割はどう変わるか?
ikkimiyazaki
1
570
Oracle Cloud Infrastructure:2025年9月度サービス・アップデート
oracle4engineer
PRO
0
450
ユニットテストに対する考え方の変遷 / Everyone should watch his live coding
mdstoy
0
130
許しとアジャイル
jnuank
1
130
From Prompt to Product @ How to Web 2025, Bucharest, Romania
janwerner
0
120
【新卒研修資料】LLM・生成AI研修 / Large Language Model・Generative AI
brainpadpr
24
17k
スタートアップにおけるこれからの「データ整備」
shomaekawa
0
150
Why Governance Matters: The Key to Reducing Risk Without Slowing Down
sarahjwells
0
110
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
1
460
小学4年生夏休みの自由研究「ぼくと Copilot エージェント」
taichinakamura
0
310
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
150
Featured
See All Featured
Facilitating Awesome Meetings
lara
56
6.6k
Thoughts on Productivity
jonyablonski
70
4.9k
Fireside Chat
paigeccino
40
3.7k
Producing Creativity
orderedlist
PRO
347
40k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Scaling GitHub
holman
463
140k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
Designing Experiences People Love
moore
142
24k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Balancing Empowerment & Direction
lara
4
680
Optimizing for Happiness
mojombo
379
70k
Transcript
2019/12/7 Takahiro Yoshinaga, LINE Corporation
© 2015 KURUMADA PRODUCTION
@t_yoshinaga0106 Takahiro Yoshinaga aE l l , l hi RE
S R E s l e t a t o l l / BL cDn IPN
!
# , , cost, impression Web service df #>
gender age cost impression click conversion #> 1 M 10 51 101 0 0 #> 2 F 20 52 102 3 1 #> 3 M 30 53 103 6 2 #> 4 F 40 54 104 9 3 #> 5 M 50 55 105 12 4 #> 6 F 60 56 106 15 5 #> 7 M 70 57 107 18 6 #> 8 F 80 58 108 21 7 #> 9 M 90 59 109 24 8 #> 10 F 100 60 110 27 9 Sample # !" !
:
dplyr # Summarize by gender df_summarized_gender <- df %>% group_by(gender)
%>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_gender #> # A tibble: 2 x 11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # Summarize by age df_summarized_age <- df %>% group_by(age) %>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545.
dplyr # Summarize by gender df_summarized_gender <- df %>% group_by(gender)
%>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_gender #> # A tibble: 2 x 11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # Summarize by age df_summarized_age <- df %>% group_by(age) %>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545. !? !?
%! $ # "
mmetrics GI EI - C l ü . : .
: A - . . / l - ü - .: C - . l : ü LD ND R l - : ü .: .: - : : : - C .
# metrics <- mmetrics::define( cost = sum(cost), impression = sum(impression),
click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000) # axis df_summarized_gender <- mmetrics::add(df, gender, metrics = metrics) df_summarized_age <- mmetrics::add(df, age, metrics = metrics) Use Case of mmetrics
Result # df_summarized_gender #> # A tibble: 2 x
11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545.
© ,0%"/4)"-UE1VCMJTIFST