Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンティストに同じクエリは二度も通じぬ
Search
Takahiro Yoshinaga
December 07, 2019
Technology
2
950
データサイエンティストに同じクエリは二度も通じぬ
Presentation in Japan.R 2019
Takahiro Yoshinaga
December 07, 2019
Tweet
Share
More Decks by Takahiro Yoshinaga
See All by Takahiro Yoshinaga
ビッグデータビジネスによる継続的な価値創造と人材育成
yoshinaga0106
0
110
社内LINE公式アカウント メッセージ送りすぎ問題を データサイエンスで解決する
yoshinaga0106
0
190
[ICML2021 論文読み会] A General Framework For Detecting Anomalous Inputs to DNN Classifiers
yoshinaga0106
0
1.4k
Data Science API
yoshinaga0106
5
2.6k
Anomaly Detection in KDD2019
yoshinaga0106
1
370
Data Engineering & Data Analysis #8
yoshinaga0106
1
2.4k
Conversion Prediction Using Multi-task Conditional Attention Networks to Support the Creation of Effective Ad Creatives
yoshinaga0106
0
1.4k
Introduction of Clumpiness
yoshinaga0106
0
140
データにまつわる苦労話から考えるデータ活用
yoshinaga0106
0
130
Other Decks in Technology
See All in Technology
持続可能なドキュメント運用のリアル: 1年間の成果とこれから
akitok_
1
260
2025-04-14 Data & Analytics 井戸端会議 Multi tenant log platform with Iceberg
kamijin_fanta
0
150
Databricksで完全履修!オールインワンレイクハウスは実在した!
akuwano
0
130
AWSの新機能検証をやる時こそ、Amazon Qでプロンプトエンジニアリングを駆使しよう
duelist2020jp
1
320
ガバクラのAWS長期継続割引 ~次の4/1に慌てないために~
hamijay_cloud
1
560
3D生成AIのための画像生成
kosukeito
2
580
Porting PicoRuby to Another Microcontroller: ESP32
yuuu
4
520
10ヶ月かけてstyled-components v4からv5にアップデートした話
uhyo
5
440
AIとSREで「今」できること
honmarkhunt
3
650
Road to Go Gem #rubykaigi
sue445
0
1.1k
CodePipelineのアクション統合から学ぶAWS CDKの抽象化技術 / codepipeline-actions-cdk-abstraction
gotok365
5
340
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
4
860
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
52
7.5k
Fireside Chat
paigeccino
37
3.4k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
770
What's in a price? How to price your products and services
michaelherold
245
12k
Navigating Team Friction
lara
185
15k
KATA
mclloyd
29
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Done Done
chrislema
184
16k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.2k
Agile that works and the tools we love
rasmusluckow
329
21k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
Transcript
2019/12/7 Takahiro Yoshinaga, LINE Corporation
© 2015 KURUMADA PRODUCTION
@t_yoshinaga0106 Takahiro Yoshinaga aE l l , l hi RE
S R E s l e t a t o l l / BL cDn IPN
!
# , , cost, impression Web service df #>
gender age cost impression click conversion #> 1 M 10 51 101 0 0 #> 2 F 20 52 102 3 1 #> 3 M 30 53 103 6 2 #> 4 F 40 54 104 9 3 #> 5 M 50 55 105 12 4 #> 6 F 60 56 106 15 5 #> 7 M 70 57 107 18 6 #> 8 F 80 58 108 21 7 #> 9 M 90 59 109 24 8 #> 10 F 100 60 110 27 9 Sample # !" !
:
dplyr # Summarize by gender df_summarized_gender <- df %>% group_by(gender)
%>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_gender #> # A tibble: 2 x 11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # Summarize by age df_summarized_age <- df %>% group_by(age) %>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545.
dplyr # Summarize by gender df_summarized_gender <- df %>% group_by(gender)
%>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_gender #> # A tibble: 2 x 11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # Summarize by age df_summarized_age <- df %>% group_by(age) %>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545. !? !?
%! $ # "
mmetrics GI EI - C l ü . : .
: A - . . / l - ü - .: C - . l : ü LD ND R l - : ü .: .: - : : : - C .
# metrics <- mmetrics::define( cost = sum(cost), impression = sum(impression),
click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000) # axis df_summarized_gender <- mmetrics::add(df, gender, metrics = metrics) df_summarized_age <- mmetrics::add(df, age, metrics = metrics) Use Case of mmetrics
Result # df_summarized_gender #> # A tibble: 2 x
11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545.
© ,0%"/4)"-UE1VCMJTIFST