$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンティストに同じクエリは二度も通じぬ
Search
Takahiro Yoshinaga
December 07, 2019
Technology
2
970
データサイエンティストに同じクエリは二度も通じぬ
Presentation in Japan.R 2019
Takahiro Yoshinaga
December 07, 2019
Tweet
Share
More Decks by Takahiro Yoshinaga
See All by Takahiro Yoshinaga
ビッグデータビジネスによる継続的な価値創造と人材育成
yoshinaga0106
0
130
社内LINE公式アカウント メッセージ送りすぎ問題を データサイエンスで解決する
yoshinaga0106
0
230
[ICML2021 論文読み会] A General Framework For Detecting Anomalous Inputs to DNN Classifiers
yoshinaga0106
0
1.4k
Data Science API
yoshinaga0106
5
2.7k
Anomaly Detection in KDD2019
yoshinaga0106
1
400
Data Engineering & Data Analysis #8
yoshinaga0106
1
2.6k
Conversion Prediction Using Multi-task Conditional Attention Networks to Support the Creation of Effective Ad Creatives
yoshinaga0106
0
1.5k
Introduction of Clumpiness
yoshinaga0106
0
160
データにまつわる苦労話から考えるデータ活用
yoshinaga0106
0
150
Other Decks in Technology
See All in Technology
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
5
1.4k
AWS Bedrock AgentCoreで作る 1on1支援AIエージェント 〜Memory × Evaluationsによる実践開発〜
yusukeshimizu
6
380
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
1.2k
AI駆動開発における設計思想 認知負荷を下げるフロントエンドアーキテクチャ/ 20251211 Teppei Hanai
shift_evolve
PRO
2
310
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
1
640
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
310
5分で知るMicrosoft Ignite
taiponrock
PRO
0
320
Lessons from Migrating to OpenSearch: Shard Design, Log Ingestion, and UI Decisions
sansantech
PRO
1
110
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
2.3k
学習データって増やせばいいんですか?
ftakahashi
2
290
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
660
AWS CLIの新しい認証情報設定方法aws loginコマンドの実態
wkm2
6
690
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
How to Ace a Technical Interview
jacobian
280
24k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.1k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Documentation Writing (for coders)
carmenintech
76
5.2k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
2019/12/7 Takahiro Yoshinaga, LINE Corporation
© 2015 KURUMADA PRODUCTION
@t_yoshinaga0106 Takahiro Yoshinaga aE l l , l hi RE
S R E s l e t a t o l l / BL cDn IPN
!
# , , cost, impression Web service df #>
gender age cost impression click conversion #> 1 M 10 51 101 0 0 #> 2 F 20 52 102 3 1 #> 3 M 30 53 103 6 2 #> 4 F 40 54 104 9 3 #> 5 M 50 55 105 12 4 #> 6 F 60 56 106 15 5 #> 7 M 70 57 107 18 6 #> 8 F 80 58 108 21 7 #> 9 M 90 59 109 24 8 #> 10 F 100 60 110 27 9 Sample # !" !
:
dplyr # Summarize by gender df_summarized_gender <- df %>% group_by(gender)
%>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_gender #> # A tibble: 2 x 11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # Summarize by age df_summarized_age <- df %>% group_by(age) %>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545.
dplyr # Summarize by gender df_summarized_gender <- df %>% group_by(gender)
%>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_gender #> # A tibble: 2 x 11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # Summarize by age df_summarized_age <- df %>% group_by(age) %>% summarize( cost = sum(cost), impression = sum(impression), click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000 ) df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545. !? !?
%! $ # "
mmetrics GI EI - C l ü . : .
: A - . . / l - ü - .: C - . l : ü LD ND R l - : ü .: .: - : : : - C .
# metrics <- mmetrics::define( cost = sum(cost), impression = sum(impression),
click = sum(click), conversion = sum(conversion), ctr = sum(click) / sum(impression), cvr = sum(conversion) / sum(click), ctvr = sum(conversion) / sum(impression), cpa = sum(cost) / sum(conversion), cpc = sum(cost) / sum(click), ecpm = sum(cost) / sum(impression) * 1000) # axis df_summarized_gender <- mmetrics::add(df, gender, metrics = metrics) df_summarized_age <- mmetrics::add(df, age, metrics = metrics) Use Case of mmetrics
Result # df_summarized_gender #> # A tibble: 2 x
11 #> gender cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <fct> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 F 280 530 75 25 0.142 0.333 0.0472 11.2 3.73 528. #> 2 M 275 525 60 20 0.114 0.333 0.0381 13.8 4.58 524. # df_summarized_age #> # A tibble: 10 x 11 #> age cost impression click conversion ctr cvr ctvr cpa cpc ecpm #> <dbl> <int> <int> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 10 51 101 0 0 0 NaN 0 Inf Inf 505. #> 2 20 52 102 3 1 0.0294 0.333 0.00980 52 17.3 510. #> 3 30 53 103 6 2 0.0583 0.333 0.0194 26.5 8.83 515. #> 4 40 54 104 9 3 0.0865 0.333 0.0288 18 6 519. #> 5 50 55 105 12 4 0.114 0.333 0.0381 13.8 4.58 524. #> 6 60 56 106 15 5 0.142 0.333 0.0472 11.2 3.73 528. #> 7 70 57 107 18 6 0.168 0.333 0.0561 9.5 3.17 533. #> 8 80 58 108 21 7 0.194 0.333 0.0648 8.29 2.76 537. #> 9 90 59 109 24 8 0.220 0.333 0.0734 7.38 2.46 541. #> 10 100 60 110 27 9 0.245 0.333 0.0818 6.67 2.22 545.
© ,0%"/4)"-UE1VCMJTIFST