Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
08 SDAからIDAへ
Search
419kfj
October 09, 2023
0
51
08 SDAからIDAへ
SSJDA計量分析セミナー
対応分析/多重対応分析の原理と実際 08
419kfj
October 09, 2023
Tweet
Share
More Decks by 419kfj
See All by 419kfj
R.Q.(リサーチ・クエスチョン)構築という視点から 伝統的検定手法とベイジアン推定を比較する
419kfj
0
56
多重対応分析/構造化データ解析の原理と研究者視点の介在点「文化と不平等」調査データの分析(1)
419kfj
0
78
Methods and Examples of Correspondence Analysis
419kfj
0
99
01 Introduction
419kfj
0
88
02 ベクトル行列演算とCAの数理
419kfj
0
110
03 CAの数理その2
419kfj
0
51
04 データの準備
419kfj
0
58
05 CAとMCA事例
419kfj
0
59
06 MCA_01
419kfj
0
53
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Designing for humans not robots
tammielis
252
25k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
135
33k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
GraphQLとの向き合い方2022年版
quramy
46
14k
Embracing the Ebb and Flow
colly
85
4.6k
How GitHub (no longer) Works
holman
314
140k
Navigating Team Friction
lara
184
15k
Unsuck your backbone
ammeep
670
57k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Transcript
SDAとIDA /MCAの応⽤編 計量分析セミナー 2023/09/06 藤本⼀男
[email protected]
GDAの中でのSDAとIDA • 記述 • SDA:個体空間の構造を追加変数を⽤いて分析。 • カテゴリ平均点の配置(距離)、集中楕円(散らばり)として領域図 ⽰ • カテゴリ平均点の差
• 分解された分散の評価。η2 (群間分散/全体分散) • 検定 • 記述統計によって明らかになった差異は、有意か • 典型性検定 • 同質性検定
Rmarkdownで実⾏ • 分散の分解 • https://rpubs.com/kfj419/1078098 • SDAからIDAへ • https://rpubs.com/kfj419/1078199 •
SDAの補⾜ • 表4.1の再現 https://rpubs.com/kfj419/1078072 • 表4.2の再現 https://rpubs.com/kfj419/1078113
嗜好データを性別で分析する 1-2軸 • 軸の標準偏差が√λ • この尺度化は、標準化し ている。 男⼥差→ それを√λで尺度化→
嗜好データを性別で分析する 3-2軸 • ⽐較の⼤まかな⽬安 • > 0.5:注⽬すべき差 • > 1
:⼤きい差 それを√λで 尺度化→ 男⼥差→
性別で分散を分解する • 相関⽐η2に注⽬する。dim3が⼤きい。 この表は、GDAtools::varsupで得られる。
以上が記述統計的分析。この差を検定する • 典型性検定の結果。 • すべての軸で差は有意である。
年齢で分析する 1−2軸
この表も、GDAtools::varsupで得られる。
3−2軸
同質性検定
典型性検定なので、カテゴリ平均点の 全体(原点)からのズレを検定している。 p値は、典型性のレベルの指標になっている。 1軸、2軸では、35−44歳、45−54歳の典型 性レベルは⾼い。 しかし、3軸では、すべての年齢カテゴリで 典型度が⾼いことがわかる。