Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Looker BEACON 2021 / How we implemented Scaleba...
Search
Naoki Ainoya
June 23, 2021
Technology
0
2.8k
Looker BEACON 2021 / How we implemented Scalebase Analytics with Looker
Looker BEACON 2021 / Looker組み込みアナリティクスによるScalebase分析機能の展開
Naoki Ainoya
June 23, 2021
Tweet
Share
More Decks by Naoki Ainoya
See All by Naoki Ainoya
Salesforce Application Development with GitHub Actions and sfdx-cli
ainoya
1
3.9k
Scalebase Analytics powered by Looker
ainoya
0
2.4k
SPIFFE in Action
ainoya
4
1.5k
How Developer Support Works
ainoya
10
2.6k
リクルートマーケティングパートナーズでのDeployGate活用事例
ainoya
2
4.5k
[RMPxQuipper meetup #3]開発のための開発~スマホアプリ向けe2eテストの検証導入事例を通じて~
ainoya
1
2.3k
How to play Scala on dockerized infrastructure
ainoya
4
3.1k
prevs.io開発の裏側とコンテナ仮想化時代のAPI運用
ainoya
4
2.5k
ビルドパイプラインツールをGoで作った話
ainoya
3
2.6k
Other Decks in Technology
See All in Technology
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
240
Rustから学ぶ 非同期処理の仕組み
skanehira
1
130
2025年になってもまだMySQLが好き
yoku0825
8
4.7k
MCPで変わる Amebaデザインシステム「Spindle」の開発
spindle
PRO
3
3.2k
AI開発ツールCreateがAnythingになったよ
tendasato
0
130
Automating Web Accessibility Testing with AI Agents
maminami373
0
1.2k
COVESA VSSによる車両データモデルの標準化とAWS IoT FleetWiseの活用
osawa
1
270
KotlinConf 2025_イベントレポート
sony
1
130
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
130
「全員プロダクトマネージャー」を実現する、Cursorによる仕様検討の自動運転
applism118
21
10k
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
240
CDK CLIで使ってたあの機能、CDK Toolkit Libraryではどうやるの?
smt7174
4
150
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
GitHub's CSS Performance
jonrohan
1032
460k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Thoughts on Productivity
jonyablonski
70
4.8k
Site-Speed That Sticks
csswizardry
10
810
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
GraphQLとの向き合い方2022年版
quramy
49
14k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Transcript
Looker組み込みアナリティクスによる Scalebase分析機能の展開 BEACON Japan 2021 Naoki Ainoya / Alp, Inc.
自己紹介 • Naoki Ainoya • SRE @ Alp, Inc. •
Scalebaseの開発・運用
本日お話すること Scalebaseに分析機能を実装するにあたり… • Looker選定に至った背景 • 組み込みAnalyticsの実装方式と構成 • 実運用・開発フロー • 導入後の成果・反響
サブスクリプションビジネス効率化・収益 最大化プラットフォーム
Scalebaseが対象とするビジネスモデル
契約・請求・分析のオペレーションを一気通貫で管理 SFAや会計システムと連携し、シームレスなオペレーションを実現
契約・請求・分析のオペレーションを一気通貫で管理 SFAや会計システムと連携し、シームレスなオペレーションを実現
Scalebaseの分析機能 • Scalebase内のデータを リアルタイムに可視化する 分析ダッシュボードを提供 • Looker組み込みアナリティクス (Embed SSO)で Scalebaseサービス内に埋め込み
顧客に展開
Lookerを採用した理由 サービスに組み込み可能なBIソリューションをいくつか検証し、Lookerを採用 検討時の要件: • 人・時間のリソースが限られている状況で、素早く立ち上げること • 急激なサービスの成長にも耐えられる作りになっていること
Lookerを採用した理由 検討時の要件: • 人・時間のリソースが限られている状況で、MVP(Minimum Viable Product)を素早 く立ち上げ、改善できること • Developer Experienceが重要
→LookMLの高い表現力・開発のしやすさ 定義のGit管理ができ、変更管理・レビュー・リリース管理がしやすい →Embed SSOによる組み込みとダッシュボード開発の容易さ
Lookerを採用した理由 検討時の要件: • 急激なサービスの成長にも耐えられる作りになっていること →Looker自体がパフォーマンスのボトルネックになりづらいアーキテクチャ →負荷に応じてデータウェアハウスのアーキテクチャを将来変更して捌ける (小さく始められ、かつ処理が重くなってもこちらで対応でき、手詰まりとならない)
他BIツールの検討時に問題になったこと • 自社サービスへの組み込み方法 • ユーザーアカウントのプロビジョニング方法
組み込みのしやすさ • シンプルな機構で実装が容易だった
組み込みのしやすさ ①組み込みURL生成リクエスト
組み込みのしやすさ ①ダッシュボードURL 生成リクエスト ②サーバサイドでダッシュボードURL生成、API キーで署名 (事前にLookerからAPIキーを取得)
組み込みのしやすさ ②サーバサイドでダッシュボードURL生成、API キーで署名 (事前にLookerからAPIキーを取得) • URL生成時に、Lookerへのアクセス権限やLookerダッ シュボードで使用するユーザ属性(ユーザIDなど)をパラ メータとして付与して生成 • 生成URLをAPIキーで署名するため
第三者が不正に生成・改ざんすることは困難 • APIキーは事前に取得して使用するため、URL生成の 都度Lookerに問い合わせる必要が無いので楽
組み込みのしやすさ ①ダッシュボードURL 生成リクエスト ②サーバサイドでダッシュボードURL生成、API キーで署名 (事前にLookerからAPIキーを取得) ③生成されたURLでLooker ダッシュボードをiframe呼び 出し
ユーザアカウントのプロビジョニング方法 • アカウントの発行 • BIサービス側と自社サービス側のアカウントの同期
ユーザアカウントのプロビジョニング方法 ③生成されたURLでLooker ダッシュボードをiframe呼び 出し このとき、Looker側にユーザーアカウントが 自動作成される ScalebaseサーバからLookerに対して都度ア カウント発行処理等は必要無い
ユーザアカウントのプロビジョニング方法 ③生成されたURLでLooker ダッシュボードをiframe呼び 出し このとき、Looker側にユーザーアカウントが 自動作成される ScalebaseサーバからLookerに対して都度ア カウント発行処理等は必要無い 事前のアカウント 払い出し処理が不要
まとめ:Lookerを組込み分析で使用するメリット • スケーラビリティのあるアーキテクチャ • LookMLによるダッシュボード、データモデルのメンテナンス容易性 • 組込み実装のしやすさ • ユーザアカウントのプロビジョニングが楽 その結果・・・
結果として:リリースまでのタイムライン おかげさまで機能検討開始からリリースまで半年程度で完了 • PRD・要件定義: 1~2ヶ月 • BIソリューション選定: 1~2ヶ月 • Looker社リードのもとPoC:
1ヶ月 • 実装: 2~3ヶ月 (Lookerのプロフェショナルサービス利用) PoC、実装はLookerチームの支援でスピード感持って進められた。感謝!
メンバー構成 全員兼務あり、限られたメンバー構成で無理なく進行 • PM: 1名 • デザイン: 1名 • フロント:
1名 • バックエンド: 1名 • SRE: 1名
全体構成・開発フロー • Lookerと接続するデータインフラの構成 • LookMLダッシュボード・データモデルの開発フロー
全体構成 • データ基盤無い状態から最小構成で始める • データ規模に応じアーキテクチャを変更して いく方針 • LookerからAurora MySQLを直接参照する 構成
◦ リアルタイム性を重視
重い集計の逃し方 • MySQLでは重すぎる処理が出てきたら、S3 とAthenaで集計する処理で補助
重い集計の逃し方 • LookerのPersistent Derived Table(PDT)機 能を使って重い集計処理は一時テーブルに キャッシュ可能 • 簡単なETLならLookerだけで実現可能
データ規模に応じたなめらかな拡張 • データ規模に応じアーキテクチャを変更 • LookerからMySQLへの参照をやめる • AWS Athena + Federated
Queryによって データ同期の遅延を損なうことなく切り替え • LookMLに大規模な変更をせずに無停止で 変更を実現
LookML開発フロー • Lookerのエディタ上で編集し、Lookerインスタンスに反映するフロー • 素早く開発できるようにする • かつ、安全なリリースを行えるようにする必要がある →Git連携を生かしてGitHub上でCI/CDを構築して開発・運用
LookML開発フロー • Looker本番・開発インスタンス用に2リポジトリ構成
LookML開発フロー • GitHub Actionsを活用して運用自動化、安全にリリース • gitリポジトリでダッシュボード定義を管理できる利点が活躍 ※Looker 7.20からデプロイ元ブランチを選択可能になったため、現在は1リポジトリで実現可能
補足: デザイン面 ダッシュボードのデザインをLooker上でどう表現するか • LookerのビルトインのVisualizationを利用する場合は、 見た目のカスタマイズある程度できるが、妥協は必要 • ただ、拡張の余地は多いにある
デザイン面: 独自Visualizationによる拡張 • Custom Visualizationを使用してタイル部分を自前で実装可能 • 実際にmultiple_valueのコードをフォークしてデザインを 少し変えて使用している
デザイン面: API・SDKによる拡張 • API/SDKを使用してiframe呼び出しをやめて完全に自前デザインにすることも可能 • 実際にフィルタ部分をiframe外で自前実装している iframe iframe外の実装
リリース後の反響 • 多くのフィードバックをいただいた • 可視化に対するニーズは多様 • 様々な可視化の切り口がある(経理担当者・事業企画者・経営者etc..) • まだまだこれからだが、要望に応える分析機能を提供していく ◦
入金状況・コホート・レイヤーケーキチャートなど続々と対応している • 一般的なSaaS開発と同様、顧客の声に耳を傾けひたすら改善あるのみ
まとめ • Looker採用によってScalebaseの分析機能を素早く立ち上げることができた • スタートアップにおいて人・時間の制約がある状況でも無理なく実現 • LookMLのおかげでダッシュボード定義もブラックボックス化しにくく運用面の不安 が少ない • Lookerが機能で対応していない設定部分もCIでの定義自動生成などである程度カ
バーしてしまえるのもConfiguration as Codeの良さ • Lookerは社内BIだけでなく、プロダクトで顧客向けの分析機能を提供したい場合に もおすすめです
We’re hiring! • データの力で サブスクリプションビジネスの 世界を変えましょう • https://thealp.co.jp • https://herp.careers/v1/alpinc