Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2024年度秋学期 統計学 第3回 クロス集計と感度・特異度,データの可視化 (2024. 1...
Search
Akira Asano
PRO
September 29, 2024
Education
0
73
2024年度秋学期 統計学 第3回 クロス集計と感度・特異度,データの可視化 (2024. 10. 9)
関西大学総合情報学部 統計学(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2024a/STAT/
Akira Asano
PRO
September 29, 2024
Tweet
Share
More Decks by Akira Asano
See All by Akira Asano
2024年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2024. 11. 29)
akiraasano
PRO
0
5
2024年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2024. 11. 29)
akiraasano
PRO
0
4
2024年度秋学期 統計学 第9回 確からしさを記述する ― 確率 (2024. 11. 27)
akiraasano
PRO
0
6
2024年度秋学期 統計学 第10回 分布の推測とは - 標本調査,度数分布と確率分布 (2024. 11. 27)
akiraasano
PRO
0
6
2024年度秋学期 統計学 第8回 第1部の演習 (2024. 11. 6)
akiraasano
PRO
0
31
2024年度秋学期 統計学 第7回 データの関係を知る(2)ー 回帰と決定係数 (2024. 11. 6)
akiraasano
PRO
0
63
2024年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2024. 11. 8)
akiraasano
PRO
0
7
2024年度秋学期 統計学 第6回 データの関係を知る(1)ー相関関係 (2024. 10. 30)
akiraasano
PRO
0
52
2024年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例 (2024. 10. 25)
akiraasano
PRO
0
33
Other Decks in Education
See All in Education
Chapitre_1_-__L_atmosphère_et_la_vie_-_Partie_1.pdf
bernhardsvt
0
220
LLMs for Social Simulation: Progress, Opportunities and Challenges
wingnus
1
100
CompTIA Security+ SY0-601 Resumo
mariliarochas
2
2.6k
アニメに学ぶチームの多様性とコンピテンシー
terahide
0
240
ルクソールとツタンカーメン
masakamayama
1
810
The Blockchain Game
jscottmo
0
3.7k
小・中・高等学校における情報教育の体系的な学習を目指したカリキュラムモデル案/curriculum model
codeforeveryone
2
2.3k
Tableau トレーニング【株式会社ニジボックス】
nbkouhou
0
19k
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
800
HCL Domino 14.0 AutoUpdate を試してみた
harunakano
0
1.7k
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.5k
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
2.7k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
8.2k
Ruby is Unlike a Banana
tanoku
97
11k
Producing Creativity
orderedlist
PRO
341
39k
Done Done
chrislema
181
16k
Into the Great Unknown - MozCon
thekraken
32
1.5k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Side Projects
sachag
452
42k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Automating Front-end Workflow
addyosmani
1366
200k
Transcript
関西大学総合情報学部 浅野 晃 統計学 2024年度秋学期 第3回 クロス集計と感度・特異度, データの可視化
データの種類〜尺度水準〜🤔🤔
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 データは数字だとは言っても 3 例えば,選択肢の「1番・2番・3番」は, 数字ではない「a・b・c」でも「イ・ロ・ハ」でも同じだから,数「量」ではない 数字は,必ずしも「数量」を表しているとは限りません
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 尺度水準 4 比例尺度 間隔尺度 順序尺度 名義尺度 統計学では,数字を「数量」としての 意味をどのくらい持っているかで
4つのレベルに分けている 量的データ 足し算引き算ができる 質的データ 足し算引き算ができない これを尺度水準という
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 名義尺度 5 1番・2番・3番 さあどれ? 選択肢を区別するための,単なる記号。 男性:1 女性:2 2番が1番より大きいという意味は?
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 名義尺度 5 1番・2番・3番 さあどれ? 選択肢を区別するための,単なる記号。 男性:1 女性:2 2番が1番より大きいという意味は? ない
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 順序尺度 6 この講義に満足しましたか? 1) 非常に不満 ・ 2) 不満
・ 3) 満足 ・ 4) 非常に満足 数字の順番にのみ意味がある 2番は1番より満足度が大きいが, 「2番と1番の満足度の差」と「3番と2番の満足度の差」は
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 順序尺度 6 この講義に満足しましたか? 1) 非常に不満 ・ 2) 不満
・ 3) 満足 ・ 4) 非常に満足 数字の順番にのみ意味がある 2番は1番より満足度が大きいが, 「2番と1番の満足度の差」と「3番と2番の満足度の差」は 同じではない
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 間隔尺度 7 摂氏温度(20℃,-10℃)🌡🌡 数値の間の間隔にも意味がある 「0℃と10℃の温度の差」と「-10℃と0℃の温度の差」は? 20℃は10℃の2倍暖かい?
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 間隔尺度 7 摂氏温度(20℃,-10℃)🌡🌡 数値の間の間隔にも意味がある 「0℃と10℃の温度の差」と「-10℃と0℃の温度の差」は? 同じ 20℃は10℃の2倍暖かい?
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 間隔尺度 7 摂氏温度(20℃,-10℃)🌡🌡 数値の間の間隔にも意味がある 「0℃と10℃の温度の差」と「-10℃と0℃の温度の差」は? 同じ 20℃は10℃の2倍暖かい? そんなことはない🌀🌀
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 間隔尺度 7 摂氏温度(20℃,-10℃)🌡🌡 数値の間の間隔にも意味がある 「0℃と10℃の温度の差」と「-10℃と0℃の温度の差」は? 同じ 20℃は10℃の2倍暖かい? そんなことはない🌀🌀
20℃は-10℃の何倍暖かい?
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 間隔尺度 7 摂氏温度(20℃,-10℃)🌡🌡 数値の間の間隔にも意味がある 「0℃と10℃の温度の差」と「-10℃と0℃の温度の差」は? 同じ 20℃は10℃の2倍暖かい? そんなことはない🌀🌀
20℃は-10℃の何倍暖かい? ???
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで:「華氏温度」を使う人の言い分 8 2018年2月28日 フィンランド・タンペレ市 摂氏温度には,マイナスがふつうに出てくる ※米国で頑なに「華氏温度」が使われているのは, 「通常の気温では,マイナスが出てこないし,わかり やすい数字」だという言い分もある -17.8
0 10 21.1 26.7 32.2 37.8 摂氏(℃) 華氏(℉) 0 32 50 70 80 90 100
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ところで:「摂氏温度」を使う人の言い分 9 2018年2月13日 ※寒い土地では,気温が摂氏温度で+か−かは, 雪が融けるか融けないかの違いなので,きわめて重要 「+0℃」は, 0℃以上+0.5℃未満であることを示す
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 比例尺度 10 長さ・重さ・年齢など 間隔だけでなく比率にも意味がある 40歳の人は,20歳の人の2倍の年数を生きている。
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 比例尺度 10 長さ・重さ・年齢など 間隔だけでなく比率にも意味がある 40歳の人は,20歳の人の2倍の年数を生きている。 マイナスの値は存在しない (温度なら,摂氏温度ではなく絶対温度がこれにあたる)
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 比例尺度 10 長さ・重さ・年齢など 間隔だけでなく比率にも意味がある 40歳の人は,20歳の人の2倍の年数を生きている。 マイナスの値は存在しない (温度なら,摂氏温度ではなく絶対温度がこれにあたる) ※絶対温度とは,これ以上冷やすことができない「絶対零度」を「0度」として表す温度。
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 簡単に「平均」というけれど 11 平均できるのは,足し算ができる量的データ(間隔尺度・比例尺度)だけ こういうのの平均は,本当は意味がない この講義に満足しましたか? 1) 非常に不満 ・
2) 不満 ・ 3) 満足 ・ 4) 非常に満足
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 簡単に「平均」というけれど 11 平均できるのは,足し算ができる量的データ(間隔尺度・比例尺度)だけ こういうのの平均は,本当は意味がない もし平均を計算していれば,それは間隔尺度だと近似的に考えていることになる。 この講義に満足しましたか? 1) 非常に不満
・ 2) 不満 ・ 3) 満足 ・ 4) 非常に満足
クロス集計🤔🤔
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 質的データの解析について 13 次回以降は,平均を計算できるデータ=量的データ を扱います 今日は,質的データを扱うクロス集計について
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 14 例:商品Aが好きか嫌いか →好きな人:50%,嫌いな人:50% これだけでは大したことはわからない
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 14 例:商品Aが好きか嫌いか →好きな人:50%,嫌いな人:50% これだけでは大したことはわからない そこで,回答者が男性か女性かも記録しておく
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 14 例:商品Aが好きか嫌いか →好きな人:50%,嫌いな人:50% これだけでは大したことはわからない そこで,回答者が男性か女性かも記録しておく ※最近は,性別を尋ねる質問には注意を要します。 「男性・女性・答えない」という選択肢のものも多くなりました。ここでは,
説明を簡単にするために「男性/女性」としておきます。 ※関西大学では,2017年度から,受講生名簿に性別欄がなくなりました。
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 15 ひとつのデータ群を2つの項目から見て,項目間の関係を表す これが[クロス集計] 好き 嫌い 合計 男性
20 30 50 女性 30 20 50 合計 50 50 100
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 15 ひとつのデータ群を2つの項目から見て,項目間の関係を表す これが[クロス集計] 好き 嫌い 合計 男性
20 30 50 女性 30 20 50 合計 50 50 100
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 15 ひとつのデータ群を2つの項目から見て,項目間の関係を表す これが[クロス集計] 好き 嫌い 合計 男性
20 30 50 女性 30 20 50 合計 50 50 100
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 クロス集計 15 ひとつのデータ群を2つの項目から見て,項目間の関係を表す これが[クロス集計] 男性は「嫌い」が多く 女性は「好き」が多い 好き 嫌い
合計 男性 20 30 50 女性 30 20 50 合計 50 50 100
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の感度 16 A/(A+C) [感度] 本当に病気である 本当は病気ではない 検査で陽性 A B
検査で陰性 C D 合計 A + C B + D 新しい検査法をテスト 本当に病気の人のうち,検査で陽性になる人の割合
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の感度 16 A/(A+C) [感度] 本当に病気である 本当は病気ではない 検査で陽性 A B
検査で陰性 C D 合計 A + C B + D 新しい検査法をテスト 本当に病気の人のうち,検査で陽性になる人の割合
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の感度 16 感度が高ければよいというわけではない A/(A+C) [感度] 本当に病気である 本当は病気ではない 検査で陽性 A
B 検査で陰性 C D 合計 A + C B + D 新しい検査法をテスト 本当に病気の人のうち,検査で陽性になる人の割合
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の感度 16 感度が高ければよいというわけではない A/(A+C) [感度] 本当に病気である 本当は病気ではない 検査で陽性 A
B 検査で陰性 C D 合計 A + C B + D 新しい検査法をテスト 病気であってもなくても「陽性」と答えるなら,C=0で感度100% 本当に病気の人のうち,検査で陽性になる人の割合
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の感度 16 感度が高ければよいというわけではない A/(A+C) [感度] 本当に病気である 本当は病気ではない 検査で陽性 A
B 検査で陰性 C D 合計 A + C B + D 新しい検査法をテスト 病気であってもなくても「陽性」と答えるなら,C=0で感度100% ※いわゆる「オオカミ少年」。 本当に病気の人のうち,検査で陽性になる人の割合
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の特異度 17 D/(B+D) [特異度] 本当は病気でない人のうち,検査で陰性になる人の割合 本当に病気である 本当は病気ではない 検査で陽性 A
B 検査で陰性 C D 合計 A + C B + D
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の特異度 17 D/(B+D) [特異度] 本当は病気でない人のうち,検査で陰性になる人の割合 本当に病気である 本当は病気ではない 検査で陽性 A
B 検査で陰性 C D 合計 A + C B + D
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の特異度 17 特異度が高ければよいというわけでもない D/(B+D) [特異度] 本当は病気でない人のうち,検査で陰性になる人の割合 本当に病気である 本当は病気ではない 検査で陽性
A B 検査で陰性 C D 合計 A + C B + D
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 検査の特異度 17 特異度が高ければよいというわけでもない D/(B+D) [特異度] 病気であってもなくても「陰性」と答えるなら,B=0で特異度100% 本当は病気でない人のうち,検査で陰性になる人の割合 本当に病気である 本当は病気ではない
検査で陽性 A B 検査で陰性 C D 合計 A + C B + D
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 感度と特異度 18 本当に病気である 本当は病気ではない 検査で陽性 A B 検査で陰性
C D 合計 A + C B + D 「感度が90%のとき,特異度はいくら」という言い方で,検査の能力を表す 感度・特異度の両方を同時に100%近くにするのはむずかしい
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 19 ある病気を,感度80%,特異度99%で発見する検査があります。 この病気にかかっている人が検査対象者の1%であるとき, 検査で陽性だった人のうち,本当にこの病気にかかっている人の割合は いくらでしょうか。
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 20 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 話を簡単にするため,対象者が10000人いるとする テキストの表3 感度80%,特異度99% この病気にかかっている人が検査対象者の1%
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 20 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 話を簡単にするため,対象者が10000人いるとする 10000人のうち, 本当に病気の人は1%だから100人, 本当は病気でない人が9900人 テキストの表3 感度80%,特異度99% この病気にかかっている人が検査対象者の1%
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 20 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 話を簡単にするため,対象者が10000人いるとする 10000人のうち, 本当に病気の人は1%だから100人, 本当は病気でない人が9900人 感度80%だから, 病気の人100人のうち 陽性になるのは80人,陰性になってしまう人が20人 テキストの表3 感度80%,特異度99% この病気にかかっている人が検査対象者の1%
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 20 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 話を簡単にするため,対象者が10000人いるとする 10000人のうち, 本当に病気の人は1%だから100人, 本当は病気でない人が9900人 感度80%だから, 病気の人100人のうち 陽性になるのは80人,陰性になってしまう人が20人 特異度99%だから, 病気でない人9900人のうち 陰性になるのは9801人,陽性になってしまう人が99人 テキストの表3 感度80%,特異度99% この病気にかかっている人が検査対象者の1%
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 21 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 このクロス集計表で,
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 21 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 このクロス集計表で, 検査で陽性の人は合計179人
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 21 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 このクロス集計表で, 検査で陽性の人は合計179人 うち,本当に病気なのは80人
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 21 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 このクロス集計表で, 検査で陽性の人は合計179人 検査で陽性の人のうち,本当に病気の人は 80 / 179 = 0.447 つまり44.7% うち,本当に病気なのは80人
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 21 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 このクロス集計表で, 検査で陽性の人は合計179人 検査で陽性の人のうち,本当に病気の人は 80 / 179 = 0.447 つまり44.7% うち,本当に病気なのは80人 半分にも満たない
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 テキストの例題 21 本当に病気 本当は病気でない 合計 検査で陽性 80 99
179 検査で陰性 20 9801 9821 合計 100 9900 10000 このクロス集計表で, 検査で陽性の人は合計179人 検査で陽性の人のうち,本当に病気の人は 80 / 179 = 0.447 つまり44.7% うち,本当に病気なのは80人 半分にも満たない これでは検査の意味がありません。ではどうすれば? それは演習問題で。
データの可視化📊📊📈📈
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 データの可視化 23 人は, 数字の羅列をざーーーっと見て即座に意味が理解できるほど 賢くはない グラフなどの形に「描いて」理解しやすくする
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 棒グラフ 24 棒グラフでは 横軸は名義尺度でもよい 数字でなくてもよい, というのが重要 0 10 20
30 40 50 60 70 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州 棒グラフ,はよくご存じだと思いますが
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 差が際立って見えるのはどれ? 25 棒の長さが値に比例していない 0 10 20 30 40
50 60 70 0 10 50 60 70 50 52 54 56 58 60 62 64 66 68 70 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 差が際立って見えるのはどれ? 25 棒の長さが値に比例していない 0 10 20 30 40
50 60 70 0 10 50 60 70 50 52 54 56 58 60 62 64 66 68 70 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州 北 海 道 東 北 南 関 東 北 関 東 ・ 甲 信 北 陸 近 畿 東 海 中 国 四 国 九 州 縦軸の途中を切断(ブレーク)するという 「言い訳」すらしていない(ズル)
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 こんな描き方はあり? 26 高さで量を表すはずなのに,棒の幅や厚み感も変えて, 面積・体積で表しているかのように印象づけている 1968 1998 1968 1998
3万 2万 1万 1968 1998 3万 2万 1万
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 こんな描き方はあり? 26 高さで量を表すはずなのに,棒の幅や厚み感も変えて, 面積・体積で表しているかのように印象づけている 1968 1998 1968 1998
3万 2万 1万 1968 1998 3万 2万 1万 長さが2倍なら, 面積は4倍 体積は8倍 になる
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 こんな描き方はあり? 26 高さで量を表すはずなのに,棒の幅や厚み感も変えて, 面積・体積で表しているかのように印象づけている 縦軸がないから,体積で量を表しているように見える(ズル) 1968 1998 1968
1998 3万 2万 1万 1968 1998 3万 2万 1万 長さが2倍なら, 面積は4倍 体積は8倍 になる
ナイチンゲールのグラフ🏥🏥
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 フローレンス・ナイチンゲールという人 28 ※昔の欧州では,看護師は「卑しい職業」とされていたそうです。 ナイチンゲールをはじめとする人々により,現代のように, 看護師は医療の重要な担い手となりました。 フローレンス・ナイチンゲールは近代的な看護の先駆者 ナイチンゲールの誕生日の5月12日は 国際ナースデー(日本では「看護の日」)とされています。
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 やさしいかんごふさん? 29 ※子ども向けのナイチンゲールの伝記では, なぜか「やさしいかんごふさん」のように描かれているのですが… ナイチンゲールの業績は - 戦場の病院での衛生管理を徹底することによって,
感染症による死者を大幅に減らしたこと - その実績をデータとしてまとめ,グラフによる可視化を行って 英国の女王や政治家に示すことで,同国の政策を動かしたこと
カタルーニャ理工科大学にて
カタルーニャ理工科大学にて 統計学者,英国の社会変革者,近代看護の創始者
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ナイチンゲールのグラフ 31 http://upload.wikimedia.org/wikipedia/commons/1/17/Nightingale-mortality.jpg クリミア戦争における英国陸軍の死者数 ひとつの扇形の面積= 各月の死者数 グレーの部分の面積= 感染症による死者数
1855年4月以後, 衛生管理によって 各月の死者数が 大きく減ったことを 示している しかし,この方式のグラフ(coxcomb 「鶏のトサカ」といいます)は, 現在の水準では問題があります。
32 2024年度秋学期 統計学/ 関西大学総合情報学部 浅野 晃 ナイチンゲールのグラフの問題点 32 なにが問題なのか - 面積で量を表すと,大小の印象はつきやすい。 しかし,長さや角度に目盛りをうつことはでき るが,面積に目盛りをうつことはできないか ら,面積で表された量を正確に把握するのは
むずかしい。 - とくに,正方形ではなく扇形の面積を把握す るのはむずかしく,大きな扇形が誇張されて 見える。