Upgrade to Pro — share decks privately, control downloads, hide ads and more …

自己位置推定精度向上のためのセンサ情報補正

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for aks3g aks3g
September 03, 2024
80

 自己位置推定精度向上のためのセンサ情報補正

FSS2024で発表したスライドを少し修正したものです。

Avatar for aks3g

aks3g

September 03, 2024
Tweet

Transcript

  1. 背景・目的 • ミニ四駆AI • ミニ四駆と制御装置を組み合わせてタイム・速度を競う競技 • 本来ミニ四駆には動的な制御は存在しない • オフライン型ミニ四駆AIの位置推精度が課題 •

    センサから得られる情報が真値と乖離しがち • 特に軸回転を見るタコメータによる移動距離センサ • タイヤは常に滑っている • スリップ率を計測し距離センサへの補正に利用 2024/9/4 FSS2024 2
  2. コーナーセクションでのYaw角速度との相関性 • Yaw軸角速度に対して負の相関 • 急旋回の方がタイヤが滑っていると言える 2024/9/4 FSS2024 12 y =

    -4E-07x2 + 0.0002x + 1.0005 0.8 0.85 0.9 0.95 1 1.05 1.1 250 300 350 400 450 500 550 600 650 700 750 Slip Ratio Yaw軸角速度[dps] 2次関数で近似した 方が良いかも?
  3. レーンの誤検出 • 回転半径を基にした位置推定の場合スリップによってレーンを誤検出しがち • 中央周走行時のデータ 2024/9/4 FSS2024 14 500 520

    540 560 580 600 620 640 660 11 13 15 17 19 21 23 25 27 回転半径[mm] 速度[km/h] 664mm 549mm 435mm JCJCのコーナーセクション回転半径
  4. FSS2024での実績 2024/9/4 FSS2024 15 0 50 100 150 200 250

    300 350 400 450 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 グリッド番号 経過時間[sec] • グリッド上の位置推定の結果を比較 • グリッド0からスタート • 理想的にはグリッド番号が順に進む • 下のグラフのような結果が得られる 対象コース グリッド
  5. FSS2024での実績(スリップレート補正なし) 2024/9/4 FSS2024 16 0 50 100 150 200 250

    300 350 400 450 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 グリッド番号 経過時間[sec] 対象コース グリッド
  6. FSS2024での実績(スリップレート補正あり) 2024/9/4 FSS2024 17 0 50 100 150 200 250

    300 350 400 450 500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 グリッド番号 経過時間[sec] 対象コース グリッド 推定精度は向上している
  7. スリップ率に影響するパラメータは多い • 摩擦に関連するパラメータ • 重量 • タイヤ素材 • ノーマル,ソフト,ハード,スーパーハード,ローフリクション,中空タイヤ,スポンジ •

    構造に関連するパラメータ • タイヤ直径 • トレット幅 • ホイルベース • 重心位置 2024/9/4 FSS2024 19 トレット幅 ホイルベース パラメトリックに補正できる? 全パタン試験するのがかなり大変
  8. 走行データからスリップ率を推定する(1/3) • 前提条件 • 走行した内容が既知 • 幾つかの速度域で走行 • 総移動距離をサンプリング毎に得られた移動距離の和で表現 •

    パラメータA,B,C,D,Eを求める問題 • 実験で得られたモデルに対するパラメータ推定 • このままだと解くことが出来ない 2024/9/4 FSS2024 20 𝑑 = ෍ 𝑖=0 𝑁 𝑑𝑖 + ෍ 𝑗=0 𝑀 𝑑𝑗 𝑑𝑖 = (𝐴 ƴ 𝑟𝑖 + 𝐵) ሖ 𝑑𝑖 ストレートセクション走行時の移動距離 𝑑𝑗 = (𝐶 ƴ 𝑎𝑗 2 + 𝐷 ƴ 𝑎𝑗 + 𝐸) ሖ 𝑑𝑗 コーナーセクション走行時の移動距離 ƴ 𝑎𝑗 Yaw軸角速度 ƴ 𝑟𝑖 タイヤ回転数[rpm]
  9. 走行データからスリップ率を推定する(2/3) • Yaw軸角速度の情報から,コーナーを走行しているかストレートを走行しているか判 別し式を分離 • この条件でもまだ解くことが出来ない • 走行内容(コース)が既知であることを利用 2024/9/4 FSS2024

    21 𝑑𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = ෍ 𝑖=0 𝑁 𝑑𝑖 = ෍ 𝑖=0 𝑁 (𝐴 ƴ 𝑟𝑖 + 𝐵) ሖ 𝑑𝑖 𝑑𝑐𝑜𝑢𝑛𝑒𝑟 = ෍ 𝑗=0 𝑀 𝑑𝑗 = ෍ 𝑗=0 𝑀 (𝐶 ƴ 𝑎𝑗 2 + 𝐷 ƴ 𝑎𝑗 + 𝐸) ሖ 𝑑𝑗
  10. 走行データからスリップ率を推定する(3/3) • 連続するストレートセクションと連続するコーナーセクション毎に式を建てる • 十分な走行履歴があれば連立方程式が解ける • 最小二乗法でそれらしいパラメータを推定 2024/9/4 FSS2024 22

    𝑑𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = ෍ 𝑠=0 𝑂 𝑥𝑠 = ෍ 𝑖=0 𝑂 (𝐴 ƴ 𝑟𝑖 + 𝐵) ƴ 𝑥𝑠 𝑑𝑐𝑜𝑢𝑛𝑒𝑟 = ෍ 𝑐=0 𝑃 𝑥𝑐 = ෍ 𝑗=0 𝑃 (𝐶 ƴ 𝑎𝑗 2 + 𝐷 ƴ 𝑎𝑗 + 𝐸) ƴ 𝑥𝑐 𝑥𝑠 ∈ 𝑋𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 ストレートセクションを走行している区間の集合 𝑥𝑐 ∈ 𝑋𝑐𝑜𝑢𝑛𝑒𝑟 コーナーセクションを走行している区間の集合
  11. 推定結果 • レーンチェンジなしのオーバルコース(右図)を内周,中央周,外周を走行 • ストレートセクションの長さは以下のように設定 • 外周 590mm • 中央周

    570mm • 内周 550mm • コーナーセクションの半径は以下のように設定 • 外周 664mm • 中央周 549mm • 内周 435mm 2024/9/4 FSS2024 23 0.9 0.92 0.94 0.96 0.98 1 1.02 1500 2000 2500 3000 3500 4000 4500 5000 5500 Slip ratio 回転数[rpm] 0.8 0.85 0.9 0.95 1 1.05 1.1 250 350 450 550 650 750 850 Slip Ratio Yaw軸角速度[dps]
  12. まとめ • 画像計測による走行距離の実測方法を示した • ミニ四駆のスリップがストレートとコーナーで異なる振る舞いをすることを示した • ストレートは線形近似,コーナーは2次多項式近似で補正をした • モデルがこれで正しいのかは別途調査が必要 •

    上記モデルを基に実走行データのみを用いて補正のパラメータを得られることを示した • 事例数が足りていないので追試が必要 • 実ストレート長さについての検討が必要 2024/9/4 FSS2024 24
  13. 使用機材 2024/9/4 FSS2024 26 • カメラ sony XCU-CG160C • グローバルシャッタ―

    • フレームレート 100fps • 解像度 1456x1088 • レンズ
  14. 位置推定 -地図ベースの位置推定 • 入力 • コースの地図 • ミニ四駆の場合コースは1次元で表現可能 • コースを100㎜のグリッドに分割

    • 各グリッドの回転半径で分類 • ミニ四駆の状態 • 6軸IMUから得られる姿勢情報 • タコメータから得られる速度情報 • 出力 • グリッド上での存在確率 Index 0 Pitch軸 回転半径<800mm 600mm≦Yaw軸回転半径<800mm 490mm≦Yaw軸回転半径<600mm 300mm≦Yaw軸回転半径<490mm 600mm≦ - Yaw軸回転半径<800mm 490mm≦ - Yaw軸回転半径<600mm 300mm≦ - Yaw軸回転半径<490mm 800mm≦ |Yaw軸回転半径| 2024/9/4 FSS2024 28
  15. 位置推定 – グリッド上での存在確率 • 瞬時的な存在確率と更新された既存存在確率の重み付き和 • センサ1サンプル毎にこの計算を繰り返す • 最も存在確率が高い箇所を自己位置として解釈 •

    メリット • 比較的計算コストが低い • 1ループで実装可能 • デメリット • 位置ロックまでにある程度の距離が必要 2024/9/4 FSS2024 32