Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
日本人投手の2016年振り返り
Search
amacbee
September 22, 2016
Technology
1
1.3k
日本人投手の2016年振り返り
ビッグデータとPythonではじめる野球の統計分析の発表資料
https://pycon.jp/2016/ja/schedule/presentation/75/
amacbee
September 22, 2016
Tweet
Share
More Decks by amacbee
See All by amacbee
AI Agentsで沖縄を盛り上げたい
amacbee
0
23
[デモ説明資料] AIエージェントで実現するクラウドネイティブの世界
amacbee
1
67
ちゅらデータ会社紹介資料 / ChuraDATA Introduction
amacbee
2
57k
データサイエンスの業界トレンドと今後の動向
amacbee
1
1.2k
pip install pyladies
amacbee
0
420
PyCon Kyushu 2018 - Keynote
amacbee
0
2.6k
Pythonで競技プログラミングハンズオン
amacbee
1
1.3k
Pythonで作るWebクローラ入門
amacbee
21
47k
わたしとPythonとこれまでの話
amacbee
2
1.5k
Other Decks in Technology
See All in Technology
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
78k
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
130
AWSにおけるTrend Vision Oneの効果について
shimak
0
130
M5製品で作るポン置きセルラー対応カメラ
sayacom
0
160
KMP の Swift export
kokihirokawa
0
340
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
logica0419
1
430
20250929_QaaS_vol20
mura_shin
0
130
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
500
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
1k
Azure Well-Architected Framework入門
tomokusaba
1
330
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
290
Adminaで実現するISMS/SOC2運用の効率化 〜 アカウント管理編 〜
shonansurvivors
2
330
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
237
140k
Optimizing for Happiness
mojombo
379
70k
Practical Orchestrator
shlominoach
190
11k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
For a Future-Friendly Web
brad_frost
180
9.9k
Into the Great Unknown - MozCon
thekraken
40
2.1k
The World Runs on Bad Software
bkeepers
PRO
71
11k
Scaling GitHub
holman
463
140k
Producing Creativity
orderedlist
PRO
347
40k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Writing Fast Ruby
sferik
629
62k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Transcript
日本人投手の2016 年振り返り 真嘉比 愛(Ai Makabi) 2016-09-22 @PyConJP 2016 Room 202
#pyconjp_202
真嘉比愛(Ai Makabi) DATUM STUDIO 株式会社 PyLadies Tokyo 各種アカウント Slack: @amacbee
Twitter: @a_macbee Facebook: ai.makabi Python ライブラリ厳選レシピ( 共著) 昨日クロー ラの話をしてました
MLB に所属する日本人投手を セイバー メトリクスを使って分析
セイバー メトリクス デー タをもとに野球選手の能力を分析する指標 今回は以下の3 つの指標に着目 K/BB: 投手の完成度 DIPS: 投手自身の能力
WHIP: 安定感 ※ それぞれの指標の意味については後ほど ※ 参考: デー タで楽しむ野球講座 - 福岡ソフトバンク ホー クスオフィシャル
注目した選手 以下の3 選手について,2016 年に登壇した764 名の MLB 投手と比較 ダルビッシュ 有(Darvish Yu)
岩隈 久志(Iwakuma Hisashi) 前田 健太(Maeda Kenta)
使用したデー タ pitchpx から得られる2016 年の投球デー タ デー タサイズ: 251MB (
約60 万行,73 列) >>> df = pd.read_csv('...') >>> df.shape (593483, 73) 以下の4 つのカラムに着目 pit_mlbid, pit_last_name, pit_ rst_name pa_event_cd
pa_event_cd 発生したイベント情報が入っている(0~24 の数字) 三振やヒットの種類( 一塁打, 二塁打, 三塁打, HR), エラー, 妨害,etc.
参考:Play-by-Play Data Files (Event Files)
早速やってみましょう
前準備 各種指標を計算するために,「 投球回」 を計算 Wikipedia より引用 選手がどのくらい登板したかという指標 投球回(Innings pitched /
IP) は、 野球における 投手記録の一つで投手が登板したイニングの数を 表す。 イニングの途中で投手が交代した場合に は、 登板時に取ったアウト一つにつき1/3 ずつを 加える。 “ “
投球回のヒストグラム 2 つの山. 先発ロー テ勢は投球回が多い
投球回のヒストグラム ダルビッシュは投球回が少ない. 怪我の影響か
ダルビッシュ 有(Darvish Yu) 投球回: 273.33 三振: 425 / 四死球: 103
/ 被本塁打: 31 岩隈 久志(Iwakuma Hisashi) 投球回: 563.33 三振: 564 / 四死球: 187 / 被本塁打: 56 前田 健太(Maeda Kenta) 投球回: 567.33 三振: 716 / 四死球: 221 / 被本塁打: 80
K/BB - Strikeout to Walk ratio 投手の完成度の指標 四球を1 つ出すまでにいくつの三振を奪っているか 数値が大きいほどコントロー
ルが良く, 多くの三 振を奪える投手 K/BB = 奪三振数 / 与四球数 4.00 前後: 球界を代表するクラス 3.00 前後: リー グを代表するクラス 2.00 前後: 平均的なクラス
K/BB のヒストグラム 平均的な投手ラインである2.00 付近に山がある
K/BB のヒストグラム ダルビッシュが球界代表,2 人が球団内エー スな値
DIPS - Defence Independent Pitching Statistics 投手自身の能力の指標 奪三振・ 与四球・ 被本塁打の数値のみを考慮
数値がゼロに近いほど四死球が少なく, 三振を奪 える投手 DIPS = {( 与四球 - 故意四球 + 死球) * 3 + 被本塁打 * 13 - 奪三振 * 2} / 投球回数 + 3.12 1.50 前後: 球界を代表する投手 2.50 前後: 球団内のエー ス級 3.50 前後: 平均的な投手
DIPS のヒストグラム 平均的な投手ラインである3.50 付近に山がある
DIPS のヒストグラム ダルビッシュが球団内エー ス,2 人が平均的な値
WHIP - Walks plus Hits Inning Pitched 投手の安定感の指標 一イニングあたり何人の走者を出しているのか 数値がゼロに近いほどピンチを招く頻度の少ない
投手 WHIP = ( 被安打 + 与四球) / 投球回 1.00 未満: 球界を代表する投手 1.20 未満: 球団内のエー ス級 1.40 以上: 安定度に欠ける投手
WHIP のヒストグラム 1.4 以上が安定度にかける投手となり, 約半数が該当
WHIP のヒストグラム ダルビッシュが球界代表,2 人が球団内エー スな値
ダルビッシュ凄すぎでは
まとめ pitchpx 超便利 イベント情報のみ(pa_event_cd) を使った分析で も色々 な情報が分かる ダルビッシュはMLB でも球界を代表するエー ス