Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
日本人投手の2016年振り返り
Search
amacbee
September 22, 2016
Technology
1
1.2k
日本人投手の2016年振り返り
ビッグデータとPythonではじめる野球の統計分析の発表資料
https://pycon.jp/2016/ja/schedule/presentation/75/
amacbee
September 22, 2016
Tweet
Share
More Decks by amacbee
See All by amacbee
ちゅらデータ会社紹介資料 / ChuraDATA Introduction
amacbee
2
57k
データサイエンスの業界トレンドと今後の動向
amacbee
1
1.1k
pip install pyladies
amacbee
0
400
PyCon Kyushu 2018 - Keynote
amacbee
0
2.5k
Pythonで競技プログラミングハンズオン
amacbee
1
1.2k
Pythonで作るWebクローラ入門
amacbee
21
46k
わたしとPythonとこれまでの話
amacbee
2
1.4k
Other Decks in Technology
See All in Technology
生成AIによるCloud Native基盤構築の可能性と実践的ガードレールの敷設について
nwiizo
7
1.1k
AWS Control Towerを 数年運用してきての気づきとこれから/aws-controltower-ops-tips
tadayukinakamura
0
170
AIでめっちゃ便利になったけど、結局みんなで学ぶよねっていう話
kakehashi
PRO
1
340
AI AgentOps LT大会(2025/04/16) Algomatic伊藤発表資料
kosukeito
0
150
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
2
1.4k
Web Intelligence and Visual Media Analytics
weblyzard
PRO
1
5.8k
Стильный код: натуральный поиск редких атрибутов по картинке. Юлия Антохина, Data Scientist, Lamoda Tech
lamodatech
0
770
Terraform Cloudで始めるおひとりさまOrganizationsのすゝめ
handy
2
190
Automatically generating types by running tests
sinsoku
2
3.5k
白金鉱業Meetup_Vol.18_AIエージェント時代のUI/UX設計
brainpadpr
1
180
От ручной разметки к LLM: как мы создавали облако тегов в Lamoda. Анастасия Ангелова, Data Scientist, Lamoda Tech
lamodatech
0
770
AIエージェント開発手法と業務導入のプラクティス
ykosaka
7
1.7k
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Unsuck your backbone
ammeep
670
57k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
KATA
mclloyd
29
14k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Building Flexible Design Systems
yeseniaperezcruz
329
38k
The Pragmatic Product Professional
lauravandoore
33
6.5k
Optimizing for Happiness
mojombo
377
70k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Transcript
日本人投手の2016 年振り返り 真嘉比 愛(Ai Makabi) 2016-09-22 @PyConJP 2016 Room 202
#pyconjp_202
真嘉比愛(Ai Makabi) DATUM STUDIO 株式会社 PyLadies Tokyo 各種アカウント Slack: @amacbee
Twitter: @a_macbee Facebook: ai.makabi Python ライブラリ厳選レシピ( 共著) 昨日クロー ラの話をしてました
MLB に所属する日本人投手を セイバー メトリクスを使って分析
セイバー メトリクス デー タをもとに野球選手の能力を分析する指標 今回は以下の3 つの指標に着目 K/BB: 投手の完成度 DIPS: 投手自身の能力
WHIP: 安定感 ※ それぞれの指標の意味については後ほど ※ 参考: デー タで楽しむ野球講座 - 福岡ソフトバンク ホー クスオフィシャル
注目した選手 以下の3 選手について,2016 年に登壇した764 名の MLB 投手と比較 ダルビッシュ 有(Darvish Yu)
岩隈 久志(Iwakuma Hisashi) 前田 健太(Maeda Kenta)
使用したデー タ pitchpx から得られる2016 年の投球デー タ デー タサイズ: 251MB (
約60 万行,73 列) >>> df = pd.read_csv('...') >>> df.shape (593483, 73) 以下の4 つのカラムに着目 pit_mlbid, pit_last_name, pit_ rst_name pa_event_cd
pa_event_cd 発生したイベント情報が入っている(0~24 の数字) 三振やヒットの種類( 一塁打, 二塁打, 三塁打, HR), エラー, 妨害,etc.
参考:Play-by-Play Data Files (Event Files)
早速やってみましょう
前準備 各種指標を計算するために,「 投球回」 を計算 Wikipedia より引用 選手がどのくらい登板したかという指標 投球回(Innings pitched /
IP) は、 野球における 投手記録の一つで投手が登板したイニングの数を 表す。 イニングの途中で投手が交代した場合に は、 登板時に取ったアウト一つにつき1/3 ずつを 加える。 “ “
投球回のヒストグラム 2 つの山. 先発ロー テ勢は投球回が多い
投球回のヒストグラム ダルビッシュは投球回が少ない. 怪我の影響か
ダルビッシュ 有(Darvish Yu) 投球回: 273.33 三振: 425 / 四死球: 103
/ 被本塁打: 31 岩隈 久志(Iwakuma Hisashi) 投球回: 563.33 三振: 564 / 四死球: 187 / 被本塁打: 56 前田 健太(Maeda Kenta) 投球回: 567.33 三振: 716 / 四死球: 221 / 被本塁打: 80
K/BB - Strikeout to Walk ratio 投手の完成度の指標 四球を1 つ出すまでにいくつの三振を奪っているか 数値が大きいほどコントロー
ルが良く, 多くの三 振を奪える投手 K/BB = 奪三振数 / 与四球数 4.00 前後: 球界を代表するクラス 3.00 前後: リー グを代表するクラス 2.00 前後: 平均的なクラス
K/BB のヒストグラム 平均的な投手ラインである2.00 付近に山がある
K/BB のヒストグラム ダルビッシュが球界代表,2 人が球団内エー スな値
DIPS - Defence Independent Pitching Statistics 投手自身の能力の指標 奪三振・ 与四球・ 被本塁打の数値のみを考慮
数値がゼロに近いほど四死球が少なく, 三振を奪 える投手 DIPS = {( 与四球 - 故意四球 + 死球) * 3 + 被本塁打 * 13 - 奪三振 * 2} / 投球回数 + 3.12 1.50 前後: 球界を代表する投手 2.50 前後: 球団内のエー ス級 3.50 前後: 平均的な投手
DIPS のヒストグラム 平均的な投手ラインである3.50 付近に山がある
DIPS のヒストグラム ダルビッシュが球団内エー ス,2 人が平均的な値
WHIP - Walks plus Hits Inning Pitched 投手の安定感の指標 一イニングあたり何人の走者を出しているのか 数値がゼロに近いほどピンチを招く頻度の少ない
投手 WHIP = ( 被安打 + 与四球) / 投球回 1.00 未満: 球界を代表する投手 1.20 未満: 球団内のエー ス級 1.40 以上: 安定度に欠ける投手
WHIP のヒストグラム 1.4 以上が安定度にかける投手となり, 約半数が該当
WHIP のヒストグラム ダルビッシュが球界代表,2 人が球団内エー スな値
ダルビッシュ凄すぎでは
まとめ pitchpx 超便利 イベント情報のみ(pa_event_cd) を使った分析で も色々 な情報が分かる ダルビッシュはMLB でも球界を代表するエー ス