Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Engineering Scikit-Learn V2

Engineering Scikit-Learn V2

Principles, challenges and lessons learned from building a machine learning library.

Andreas Mueller

April 14, 2016
Tweet

More Decks by Andreas Mueller

Other Decks in Technology

Transcript

  1. We’ve been using it quite a lot for music recommendations

    at Spotify and I think it’s the most well-designed ML package I’ve seen so far. - spotify scikit-learn in one word: Awesome. - machinalis I’m constantly recommending that more developers and scientists try scikit-learn. - lovely The documentation is really thorough, as well, which makes the library quite easy to use. - OkCupid scikit-learn makes doing advanced analysis in Python accessible to anyone. - yhat
  2. Sensible Defaults Everything is default constructible! for clf in [KneighborsClassifier(),

    SVC(), DecisionTreeClassifier(), RandomForestClassifier(), AdaBoostClassifier(), GaussianNB(), LDA(), QDA()]: clf.fit(X_train, y_train) print(clf.score(X_test, y_test))
  3. Common Tests classifiers = all_estimators(type_filter='classifier') for name, Classifier in classifiers:

    # test classfiers can handle non-array data yield check_classifier_data_not_an_array, name, Classifier # test classifiers trained on a single label # always return this label yield check_classifiers_one_label, name, Classifier yield check_classifiers_classes, name, Classifier yield check_classifiers_pickle, name, Classifier yield check_estimators_partial_fit_n_features, name, Classifier
  4. Flat Class Hierarchy, Few Types • Numpy arrays / sparse

    matrices • Estimators • [Cross-validation objects] • [Scorers]
  5. Multi-Platform Support • Linux / Mac / Windows / Solaris

    (no kidding) • 32bit / 64bit • Python2.6 / Python2.7 / Python3.4 / Python3.5 • GCC, Clang, MSVC • OpenBLAS, ATLAS, Accelerate • And we want “one click” install