Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Automating Machine Learning

Automating Machine Learning

Avatar for Andreas Mueller

Andreas Mueller

July 15, 2016
Tweet

More Decks by Andreas Mueller

Other Decks in Science

Transcript

  1. What? from automl import AutoClassifier clf = AutoClassifier().fit(X_train, y_train) >

    Current Accuracy: 70% (AUC .65) LinearSVC(C=1), 10sec > Current Accuracy: 76% (AUC .71) RandomForest(n_estimators=20) 30sec > Current Accuracy: 80% (AUC .74) RandomForest(n_estimators=500) 30sec
  2. Meta-Learning optimization Algorithm + Parameters Dataset 3 optimization Algorithm +

    Parameters Dataset 2 optimization Algorithm + Parameters Dataset 1
  3. Meta-Learning Meta-Features 1 optimization Algorithm + Parameters Dataset 3 optimization

    Algorithm + Parameters Dataset 2 optimization Algorithm + Parameters Dataset 1 Meta-Features 2 Meta-Features 3 ML model
  4. Meta-Learning Meta-Features 1 optimization Algorithm + Parameters Dataset 3 optimization

    Algorithm + Parameters Dataset 2 optimization Algorithm + Parameters Dataset 1 Meta-Features 2 Meta-Features 3 ML model New Dataset ML model Algorithm + Parameters
  5. Within Scikit-learn • GridSearchCV • RandomizedSearchCV • BayesianSearchCV (coming) •

    Searching over Pipelines (coming) • Built-in parameter ranges (coming)
  6. TODO Clean separation of: • Model Search Space • Pipeline

    Search Space • Optimization Method • Meta-Learning • Exploit prior knowledge better! • Usability • Runtime consideration
  7. TODO Clean separation of: • Model Search Space • Pipeline

    Search Space • Optimization Method • Meta-Learning • Exploit prior knowledge better! • Usability • Runtime consideration • Data subsampling
  8. 47 Material • Random Search for Hyper-Parameter Optimization (Bergstra, Bengio)

    • Efficient and Robust Automated Machine Learning (Feurer et al) [autosklearn] • http://automl.github.io/auto-sklearn/stable/ • Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits (Lie et. al) [hyperband] https://arxiv.org/abs/1603.06560 • Scalable Bayesian Optimization Using Deep Neural Networks [Snoek et al]