Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
280
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
270
Scikit-learn: New project features in 0.17
amueller
0
100
Bootstrapping machine learning
amueller
0
130
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
160
Advanced Machine Learning with Scikit-Learn
amueller
1
610
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.7k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
3k
Featured
See All Featured
Building Adaptive Systems
keathley
43
2.8k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Being A Developer After 40
akosma
91
590k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
How to Think Like a Performance Engineer
csswizardry
27
2k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]