Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyCon India - Commodity Machine Learning; past,...
Search
Andreas Mueller
September 25, 2016
0
2.7k
PyCon India - Commodity Machine Learning; past, present and future
PyCon India 2016 keynote
Andreas Mueller
September 25, 2016
Tweet
Share
More Decks by Andreas Mueller
See All by Andreas Mueller
Automating Machine Learning
amueller
4
1.1k
Engineering Scikit-Learn V2
amueller
0
240
Advanced Machine Learning with Scikit-Learn for Pycon Amsterdam
amueller
0
240
Scikit-learn: New project features in 0.17
amueller
0
77
Bootstrapping machine learning
amueller
0
110
PyData Berlin 2014 Keynote: Commodity machine learnin
amueller
0
130
Advanced Machine Learning with Scikit-Learn
amueller
1
490
Machine Learning With Scikit-Learn ODSC SF 2015
amueller
4
1.5k
Machine Learning With Scikit-Learn - Pydata Strata NYC 2015
amueller
1
2.9k
Featured
See All Featured
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
How STYLIGHT went responsive
nonsquared
96
5.2k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
The World Runs on Bad Software
bkeepers
PRO
66
11k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Why Our Code Smells
bkeepers
PRO
335
57k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Transcript
Commodity Machine Learning Past, present and future Andreas Mueller
What is machine learning?
Automatic Decision Making Spam? Yes No
Spam? Yes No
Programming Machine Learning
Machine learning is EVERYWHERE
None
None
None
Science Engineering Medicine ...
Commodity machine learning
past
+
None
dawn of open source tools...
The age of shell
Documentation? Testing?
Scikit-learn: User centric machine learning
.fit(X, y) .predict(X) .transform(X)
present
Choose your ecosystem.
Open! Documented! Tested!
Usability is key!
ML Frameworks PyMC, Edward, Stan theano, tensorflow, keras
None
from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline
github.com/scikitlearncontrib/scikitlearncontrib
(near) Future
pip install scikitlearn==0.18rc2 0.18 for the release candidate:
sklearn.cross_validation sklearn.grid_search sklearn.learning_curve sklearn.model_selection
results = pd.DataFrame(grid_search.results_)
labels → groups n_folds → n_splits
from sklearn.cross_validation import KFold cv = KFold(n_samples, n_folds) for train,
test in cv: ... from sklearn.model_selection import KFold cv = KFold(n_folds) for train, test in cv.split(X, y): ...
from sklearn.mixture import GaussianMixture from sklearn.mixture import BayesianGaussianMixture
PCA() RandomizedPCA() PCA()
Gaussian Process Rewrite
Isolation Forests
Play from sklearn.neural_network import MLPClassifier Work import keras
pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())]) param_grid = {'preprocessing': [StandardScaler(),
None]} grid = GridSearchCV(pipe, param_grid)
40
(further) Future
Feature / Column names
from __future__ import sklearn.plotting
from __future__ import AutoClassifier
More Transparency
amueller.github.io @amuellerml @amueller
[email protected]