Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量正規分布に従う確率変数の条件付き期待値・分散
Search
axjack
January 11, 2022
Science
0
980
多変量正規分布に従う確率変数の条件付き期待値・分散
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
460
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
3k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
960
第14章マルコフ連鎖
axjack
0
150
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
340
Other Decks in Science
See All in Science
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
440
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
380
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
140
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
640
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
870
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
150
データベース03: 関係データモデル
trycycle
PRO
1
330
Distributional Regression
tackyas
0
260
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
460
高校生就活へのDA導入の提案
shunyanoda
0
6.2k
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
650
Featured
See All Featured
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
My Coaching Mixtape
mlcsv
0
26
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Color Theory Basics | Prateek | Gurzu
gurzu
0
180
The untapped power of vector embeddings
frankvandijk
1
1.5k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
48
Mozcon NYC 2025: Stop Losing SEO Traffic
samtorres
0
120
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
GraphQLとの向き合い方2022年版
quramy
50
14k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
89
How STYLIGHT went responsive
nonsquared
100
6k
Transcript
ଟมྔਖ਼نʹै͏֬มͷ ͖݅ظɾࢄ 4BUPBLJ/PHVDIJ BYKBDL!HNBJMDPN  1
ͱ͠ɺ9ฏۉЖɾࢄڞࢄߦྻЄ ͷଟมྔਖ਼ن ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λׂ̎ ɹɾЖΛׂ̎ ɹɾЄΛׂ̐ ͓ͯ͘͠ɻ ४උ Λ֬มϕΫτϧ
ΛظϕΫτϧ Λࢄڞࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
ެࣜ ͖݅֬มͷ ظɾࢄ E[X1 |X2 = x2 ] = μ1
+ Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ͚݅ͮͨ9ͷ֬มͱ͢Δɻ ͜ͷ࣌ɺ9c9YͷظɾࢄҎԼͰ͋Δɻ ˞ࢀߟɿʰຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱຊ౷ܭֶձɹฤ Qఆཧ  3
ྫ ( X Y Z ) ∼ N (( 1
2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬ม ̏มྔਖ਼ن ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z ʹ͓͚ΔɺظɾࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ݄  4
ͷղ μ = ( 3 1 2 ) Σ
= ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
ͷղ μ = ( 1 2 3 ) Σ
= ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6