Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量正規分布に従う確率変数の条件付き期待値・分散
Search
axjack
January 11, 2022
Science
0
950
多変量正規分布に従う確率変数の条件付き期待値・分散
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
440
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
3k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
950
第14章マルコフ連鎖
axjack
0
140
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
320
Other Decks in Science
See All in Science
Ignite の1年間の軌跡
ktombow
0
170
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
220
研究って何だっけ / What is Research?
ks91
PRO
1
140
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
120
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
310
データマイニング - ノードの中心性
trycycle
PRO
0
300
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
学術講演会中央大学学員会府中支部
tagtag
0
320
Transport information Geometry: Current and Future II
lwc2017
0
220
知能とはなにかーヒトとAIのあいだー
tagtag
0
110
機械学習 - SVM
trycycle
PRO
1
920
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
990
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Practical Orchestrator
shlominoach
190
11k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Why Our Code Smells
bkeepers
PRO
340
57k
The World Runs on Bad Software
bkeepers
PRO
72
12k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Transcript
ଟมྔਖ਼نʹै͏֬มͷ ͖݅ظɾࢄ 4BUPBLJ/PHVDIJ BYKBDL!HNBJMDPN  1
ͱ͠ɺ9ฏۉЖɾࢄڞࢄߦྻЄ ͷଟมྔਖ਼ن ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λׂ̎ ɹɾЖΛׂ̎ ɹɾЄΛׂ̐ ͓ͯ͘͠ɻ ४උ Λ֬มϕΫτϧ
ΛظϕΫτϧ Λࢄڞࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
ެࣜ ͖݅֬มͷ ظɾࢄ E[X1 |X2 = x2 ] = μ1
+ Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ͚݅ͮͨ9ͷ֬มͱ͢Δɻ ͜ͷ࣌ɺ9c9YͷظɾࢄҎԼͰ͋Δɻ ˞ࢀߟɿʰຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱຊ౷ܭֶձɹฤ Qఆཧ  3
ྫ ( X Y Z ) ∼ N (( 1
2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬ม ̏มྔਖ਼ن ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z ʹ͓͚ΔɺظɾࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ݄  4
ͷղ μ = ( 3 1 2 ) Σ
= ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
ͷղ μ = ( 1 2 3 ) Σ
= ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6