Upgrade to Pro — share decks privately, control downloads, hide ads and more …

多変量正規分布に従う確率変数の条件付き期待値・分散

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for axjack axjack
January 11, 2022

 多変量正規分布に従う確率変数の条件付き期待値・分散

多変量正規分布に従う確率変数の条件付き期待値・分散

Avatar for axjack

axjack

January 11, 2022
Tweet

More Decks by axjack

Other Decks in Science

Transcript

  1. ͱ͠ɺ9͸ฏۉЖɾ෼ࢄڞ෼ࢄߦྻЄ ͷଟมྔਖ਼ن෼෍ ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λ̎෼ׂ ɹɾЖΛ̎෼ׂ ɹɾЄΛ̐෼ׂ ͓ͯ͘͠ɻ ४උ Λ֬཰ม਺ϕΫτϧ

    Λظ଴஋ϕΫτϧ Λ෼ࢄڞ෼ࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
  2. ެࣜ ৚݅෇͖֬཰ม਺ͷ ظ଴஋ɾ෼ࢄ E[X1 |X2 = x2 ] = μ1

    + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ৚͚݅ͮͨ9ͷ֬཰ม਺ͱ͢Δɻ ͜ͷ࣌ɺ9c9Yͷظ଴஋ɾ෼ࢄ͸ҎԼͰ͋Δɻ ˞ࢀߟɿʰ೔ຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱ೔ຊ౷ܭֶձɹฤ Qఆཧ  3
  3. ྫ୊ ( X Y Z ) ∼ N (( 1

    2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬཰ม਺ ͸̏มྔਖ਼ن෼෍ ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z   ʹ͓͚Δɺظ଴஋ɾ෼ࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ೥݄໰  4
  4.  ͷղ౴ μ = ( 3 1 2 ) Σ

    = ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
  5.  ͷղ౴ μ = ( 1 2 3 ) Σ

    = ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6