$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第14章マルコフ連鎖
Search
axjack
March 21, 2022
Science
0
150
第14章マルコフ連鎖
統計学実践ワークブックpp.108-109
の第14章マルコフ連鎖に出てくる、
・確率変数
・状態
・状態空間
・時点
・未来/現在/過去(の履歴)
・斉次的
・遷移確率
をまとめたものである。
axjack
March 21, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
460
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
3k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
960
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
0
980
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
330
Other Decks in Science
See All in Science
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
470
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
160
2025-06-11-ai_belgium
sofievl
1
210
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
430
防災デジタル分野での官民共創の取り組み (1)防災DX官民共創をどう進めるか
ditccsugii
0
440
Distributional Regression
tackyas
0
240
知能とはなにかーヒトとAIのあいだー
tagtag
0
160
あなたに水耕栽培を愛していないとは言わせない
mutsumix
1
140
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
260
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.5k
サイコロで理解する原子核崩壊と拡散現象 〜単純化されたモデルで本質を理解する〜
syotasasaki593876
0
140
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
Featured
See All Featured
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
760
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Git: the NoSQL Database
bkeepers
PRO
432
66k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
Odyssey Design
rkendrick25
PRO
0
440
BBQ
matthewcrist
89
9.9k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Context Engineering - Making Every Token Count
addyosmani
9
560
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Transcript
ୈষϚϧίϑ࿈ ౷ܭֶ࣮ફϫʔΫϒοΫ QQ
͜ΕԿ ౷ܭֶ࣮ફϫʔΫϒοΫQQ ͷୈষϚϧίϑ࿈ʹग़ͯ͘Δɺ ɹɾ֬ม ɹɾঢ়ଶ ɹɾঢ়ଶۭؒ ɹɾ࣌ ɹɾະདྷݱࡏաڈ ͷཤྺ
ɹɾ੪࣍త ɹɾભҠ֬ Λ·ͱΊͨͷͰ͋Δɻ
Ϛϧίϑ࿈ʹೖΔલʹ Xn ֬ม9Oʮঢ়ଶʯͱ͍͏ΛऔΔͷͰ͋Δɻ ঢ়ଶΛूΊͨͷΛঢ়ଶۭؒͱ͍͏ɻ ঢ়ଶۭؒΛ4ͱ͢Δɻ ঢ়ଶۭؒू߹Ͱ͋Δɻ ఴࣈOʮ࣌ʯͱݺΕΔɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9U࣌Uͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ
͍ͯ͠Δ࣌Λ࣌Uͱͯ͠ɺ ɾ࣌U U ɹˠɹաڈ ͷཤྺ ɾ࣌Uɹˠɹݱࡏ ɾ࣌U U ɹˠະདྷ ͱೝࣝ͢Δͱ ཧղ͍͢͠తͳҙຯͰ Α͍ɻ
Ϛϧίϑ࿈ʹೖΔલʹ p(n) m (x, B) := P(Xn+m ∈ B|Xn =
x), x ∈ S B ∈ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ͷཁૉ ࣌OͰͷ Nεςοϓޙͷ ભҠ֬ ࣌OͰঢ়ଶY ू߹#ͷཁૉ͕ঢ় ଶΛूΊͨͷ ࣌O NͰͷ ֬ม ͭ·Γ ঢ়ଶΛද͢ ू߹#ͷཁૉͷͲ Ε͔ΛऔΔ ࣌OͰঢ়ଶۭؒ4ͷ ͳ͔ͷཁૉYΛऔΔ
Ϛϧίϑ࿈Ͱͳ͍
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) ະདྷͷঢ়ଶɺݱࡏͷঢ়ଶͱաڈͷཤྺͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͷ ਤ
Ϛϧίϑ࿈Ͱ͋Δ
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ = P(Xt+1 = 1|Xt ) P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) աڈͷཤྺෆཁͰ͋Δ ະདྷͷঢ়ଶݱࡏͷঢ়ଶͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͩ ͚ ʹ ґ ଘ ͢ Δ ͷ ਤ
੪࣍తͰͳ͍ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΕɺঢ়ଶભҠ֬ҟͳΔ
੪࣍తͰ͋Δ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΔ͚ΕͲɺঢ়ଶભҠ֬ಉ͡ ࣌ʹ ͋·Γ ͠ͳͯ͘Α͘ɺঢ়ଶͱঢ়ଶ ͱεςοϓ ʹ͢Εྑ͍ɻˡঢ়ଶભҠ֬ʹؔͯ͠ɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ঢ়ଶͷ͕༗ݶ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ
ະདྷ࣌ ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(3,3) p(3,1) p(2,3) p(1,2) p(2,1) p(2,2) p(3,2) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ༗ݶ੪࣍తϚϧίϑ࿈Ͱ͋Εɺঢ়ଶભҠਤͰঢ়ଶભҠ֬ΛදͤΔ ɹɾ࣍ঢ়ଶ ະདྷ ݱঢ়ଶ ݱࡏ Ͱܾ·Δɻ ɹɾաڈͷཤྺෆཁͰ͋Δɻ ɹɾભҠ֬࣌ʹґଘ͠ͳ͍ɻ ঢ়ଶͱঢ়ଶͷؒͷؔʹ͢Εྑ͍ TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ ະདྷ࣌
ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(2,1) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ∑ j∈S P(i, j) = P(1,1) + P(1,2) + P(1,3) = 1 ঢ়ଶͷ͕༗ݶ ݱঢ়ଶ͔ΒભҠͰ͖Δ ະདྷͷঢ়ଶΛશͯूΊͯ ͦΕΒͷΛͱΔͱ ̍ʹͳΔɻ Jݱঢ়ଶɻ͜͜ ͰJ K࣍ঢ়ଶɻ͜͜ ͰK TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ