Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第14章マルコフ連鎖
Search
axjack
March 21, 2022
Science
0
140
第14章マルコフ連鎖
統計学実践ワークブックpp.108-109
の第14章マルコフ連鎖に出てくる、
・確率変数
・状態
・状態空間
・時点
・未来/現在/過去(の履歴)
・斉次的
・遷移確率
をまとめたものである。
axjack
March 21, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
430
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
2.9k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
940
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
0
920
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
310
Other Decks in Science
See All in Science
研究って何だっけ / What is Research?
ks91
PRO
1
130
傾向スコアによる効果検証 / Propensity Score Analysis and Causal Effect Estimation
ikuma_w
0
140
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
640
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
Lean4による汎化誤差評価の形式化
milano0017
1
330
Machine Learning for Materials (Challenge)
aronwalsh
0
340
Celebrate UTIG: Staff and Student Awards 2025
utig
0
240
2025-06-11-ai_belgium
sofievl
1
160
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
100
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
470
データベース02: データベースの概念
trycycle
PRO
2
910
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
Code Reviewing Like a Champion
maltzj
525
40k
4 Signs Your Business is Dying
shpigford
185
22k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Designing Experiences People Love
moore
142
24k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
How to Ace a Technical Interview
jacobian
280
23k
Become a Pro
speakerdeck
PRO
29
5.5k
Rails Girls Zürich Keynote
gr2m
95
14k
Transcript
ୈষϚϧίϑ࿈ ౷ܭֶ࣮ફϫʔΫϒοΫ QQ
͜ΕԿ ౷ܭֶ࣮ફϫʔΫϒοΫQQ ͷୈষϚϧίϑ࿈ʹग़ͯ͘Δɺ ɹɾ֬ม ɹɾঢ়ଶ ɹɾঢ়ଶۭؒ ɹɾ࣌ ɹɾະདྷݱࡏաڈ ͷཤྺ
ɹɾ੪࣍త ɹɾભҠ֬ Λ·ͱΊͨͷͰ͋Δɻ
Ϛϧίϑ࿈ʹೖΔલʹ Xn ֬ม9Oʮঢ়ଶʯͱ͍͏ΛऔΔͷͰ͋Δɻ ঢ়ଶΛूΊͨͷΛঢ়ଶۭؒͱ͍͏ɻ ঢ়ଶۭؒΛ4ͱ͢Δɻ ঢ়ଶۭؒू߹Ͱ͋Δɻ ఴࣈOʮ࣌ʯͱݺΕΔɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9U࣌Uͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ
͍ͯ͠Δ࣌Λ࣌Uͱͯ͠ɺ ɾ࣌U U ɹˠɹաڈ ͷཤྺ ɾ࣌Uɹˠɹݱࡏ ɾ࣌U U ɹˠະདྷ ͱೝࣝ͢Δͱ ཧղ͍͢͠తͳҙຯͰ Α͍ɻ
Ϛϧίϑ࿈ʹೖΔલʹ p(n) m (x, B) := P(Xn+m ∈ B|Xn =
x), x ∈ S B ∈ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ͷཁૉ ࣌OͰͷ Nεςοϓޙͷ ભҠ֬ ࣌OͰঢ়ଶY ू߹#ͷཁૉ͕ঢ় ଶΛूΊͨͷ ࣌O NͰͷ ֬ม ͭ·Γ ঢ়ଶΛද͢ ू߹#ͷཁૉͷͲ Ε͔ΛऔΔ ࣌OͰঢ়ଶۭؒ4ͷ ͳ͔ͷཁૉYΛऔΔ
Ϛϧίϑ࿈Ͱͳ͍
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) ະདྷͷঢ়ଶɺݱࡏͷঢ়ଶͱաڈͷཤྺͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͷ ਤ
Ϛϧίϑ࿈Ͱ͋Δ
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ = P(Xt+1 = 1|Xt ) P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) աڈͷཤྺෆཁͰ͋Δ ະདྷͷঢ়ଶݱࡏͷঢ়ଶͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͩ ͚ ʹ ґ ଘ ͢ Δ ͷ ਤ
੪࣍తͰͳ͍ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΕɺঢ়ଶભҠ֬ҟͳΔ
੪࣍తͰ͋Δ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΔ͚ΕͲɺঢ়ଶભҠ֬ಉ͡ ࣌ʹ ͋·Γ ͠ͳͯ͘Α͘ɺঢ়ଶͱঢ়ଶ ͱεςοϓ ʹ͢Εྑ͍ɻˡঢ়ଶભҠ֬ʹؔͯ͠ɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ঢ়ଶͷ͕༗ݶ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ
ະདྷ࣌ ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(3,3) p(3,1) p(2,3) p(1,2) p(2,1) p(2,2) p(3,2) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ༗ݶ੪࣍తϚϧίϑ࿈Ͱ͋Εɺঢ়ଶભҠਤͰঢ়ଶભҠ֬ΛදͤΔ ɹɾ࣍ঢ়ଶ ະདྷ ݱঢ়ଶ ݱࡏ Ͱܾ·Δɻ ɹɾաڈͷཤྺෆཁͰ͋Δɻ ɹɾભҠ֬࣌ʹґଘ͠ͳ͍ɻ ঢ়ଶͱঢ়ଶͷؒͷؔʹ͢Εྑ͍ TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ ະདྷ࣌
ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(2,1) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ∑ j∈S P(i, j) = P(1,1) + P(1,2) + P(1,3) = 1 ঢ়ଶͷ͕༗ݶ ݱঢ়ଶ͔ΒભҠͰ͖Δ ະདྷͷঢ়ଶΛશͯूΊͯ ͦΕΒͷΛͱΔͱ ̍ʹͳΔɻ Jݱঢ়ଶɻ͜͜ ͰJ K࣍ঢ়ଶɻ͜͜ ͰK TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ