Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第14章マルコフ連鎖
Search
axjack
March 21, 2022
Science
0
140
第14章マルコフ連鎖
統計学実践ワークブックpp.108-109
の第14章マルコフ連鎖に出てくる、
・確率変数
・状態
・状態空間
・時点
・未来/現在/過去(の履歴)
・斉次的
・遷移確率
をまとめたものである。
axjack
March 21, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
410
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
2.8k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
920
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
0
890
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
300
Other Decks in Science
See All in Science
統計学入門講座 第4回スライド
techmathproject
0
160
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
590
データベース08: 実体関連モデルとは?
trycycle
PRO
0
920
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
140
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
180
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
780
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
560
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
210
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
490
データマイニング - ノードの中心性
trycycle
PRO
0
250
3次元点群を利用した植物の葉の自動セグメンテーションについて
kentaitakura
2
1.3k
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
940
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
21
1.4k
Building Applications with DynamoDB
mza
95
6.5k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
770
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
332
22k
Unsuck your backbone
ammeep
671
58k
The Cult of Friendly URLs
andyhume
79
6.5k
The Language of Interfaces
destraynor
158
25k
A designer walks into a library…
pauljervisheath
207
24k
Building an army of robots
kneath
306
45k
Transcript
ୈষϚϧίϑ࿈ ౷ܭֶ࣮ફϫʔΫϒοΫ QQ
͜ΕԿ ౷ܭֶ࣮ફϫʔΫϒοΫQQ ͷୈষϚϧίϑ࿈ʹग़ͯ͘Δɺ ɹɾ֬ม ɹɾঢ়ଶ ɹɾঢ়ଶۭؒ ɹɾ࣌ ɹɾະདྷݱࡏաڈ ͷཤྺ
ɹɾ੪࣍త ɹɾભҠ֬ Λ·ͱΊͨͷͰ͋Δɻ
Ϛϧίϑ࿈ʹೖΔલʹ Xn ֬ม9Oʮঢ়ଶʯͱ͍͏ΛऔΔͷͰ͋Δɻ ঢ়ଶΛूΊͨͷΛঢ়ଶۭؒͱ͍͏ɻ ঢ়ଶۭؒΛ4ͱ͢Δɻ ঢ়ଶۭؒू߹Ͱ͋Δɻ ఴࣈOʮ࣌ʯͱݺΕΔɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9U࣌Uͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ
͍ͯ͠Δ࣌Λ࣌Uͱͯ͠ɺ ɾ࣌U U ɹˠɹաڈ ͷཤྺ ɾ࣌Uɹˠɹݱࡏ ɾ࣌U U ɹˠະདྷ ͱೝࣝ͢Δͱ ཧղ͍͢͠తͳҙຯͰ Α͍ɻ
Ϛϧίϑ࿈ʹೖΔલʹ p(n) m (x, B) := P(Xn+m ∈ B|Xn =
x), x ∈ S B ∈ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ͷཁૉ ࣌OͰͷ Nεςοϓޙͷ ભҠ֬ ࣌OͰঢ়ଶY ू߹#ͷཁૉ͕ঢ় ଶΛूΊͨͷ ࣌O NͰͷ ֬ม ͭ·Γ ঢ়ଶΛද͢ ू߹#ͷཁૉͷͲ Ε͔ΛऔΔ ࣌OͰঢ়ଶۭؒ4ͷ ͳ͔ͷཁૉYΛऔΔ
Ϛϧίϑ࿈Ͱͳ͍
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) ະདྷͷঢ়ଶɺݱࡏͷঢ়ଶͱաڈͷཤྺͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͷ ਤ
Ϛϧίϑ࿈Ͱ͋Δ
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ = P(Xt+1 = 1|Xt ) P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) աڈͷཤྺෆཁͰ͋Δ ະདྷͷঢ়ଶݱࡏͷঢ়ଶͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͩ ͚ ʹ ґ ଘ ͢ Δ ͷ ਤ
੪࣍తͰͳ͍ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΕɺঢ়ଶભҠ֬ҟͳΔ
੪࣍తͰ͋Δ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΔ͚ΕͲɺঢ়ଶભҠ֬ಉ͡ ࣌ʹ ͋·Γ ͠ͳͯ͘Α͘ɺঢ়ଶͱঢ়ଶ ͱεςοϓ ʹ͢Εྑ͍ɻˡঢ়ଶભҠ֬ʹؔͯ͠ɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ঢ়ଶͷ͕༗ݶ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ
ະདྷ࣌ ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(3,3) p(3,1) p(2,3) p(1,2) p(2,1) p(2,2) p(3,2) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ༗ݶ੪࣍తϚϧίϑ࿈Ͱ͋Εɺঢ়ଶભҠਤͰঢ়ଶભҠ֬ΛදͤΔ ɹɾ࣍ঢ়ଶ ະདྷ ݱঢ়ଶ ݱࡏ Ͱܾ·Δɻ ɹɾաڈͷཤྺෆཁͰ͋Δɻ ɹɾભҠ֬࣌ʹґଘ͠ͳ͍ɻ ঢ়ଶͱঢ়ଶͷؒͷؔʹ͢Εྑ͍ TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ ະདྷ࣌
ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(2,1) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ∑ j∈S P(i, j) = P(1,1) + P(1,2) + P(1,3) = 1 ঢ়ଶͷ͕༗ݶ ݱঢ়ଶ͔ΒભҠͰ͖Δ ະདྷͷঢ়ଶΛશͯूΊͯ ͦΕΒͷΛͱΔͱ ̍ʹͳΔɻ Jݱঢ়ଶɻ͜͜ ͰJ K࣍ঢ়ଶɻ͜͜ ͰK TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ