Upgrade to Pro — share decks privately, control downloads, hide ads and more …

WWW 2019 Digest

Avatar for Ayae Ide Ayae Ide
September 02, 2019

WWW 2019 Digest

WWW2019 論文読み会

Avatar for Ayae Ide

Ayae Ide

September 02, 2019
Tweet

Other Decks in Technology

Transcript

  1. LINE Data Labs Data Science 1 Team LINE • AB

    • • •  e 2018d 5 2d 2018d8 LINE
  2.   • #"#021 • %,)  ! 5. •

    #"#(&/4  * • The Web Conference 20196$'3+-
  3. Overview  4%3!" 9.5 ;< 6WWW#$!" -   

    1?Web 43'27* +)8,   DAY RESEARCH TRACK DAY RESEARCH TRACK DAY RESEARCH TRACK 5/15 Fairness, Credibility and Search 5/15 Efficiency and Scalability 5/16 Health on the Web 5/15 Network Algorithms 5/15 Search 5/16 Sarcasm, Sentiment, and Language 5/15 Recommendation 5/16 Networks, Opinions, and Perceptions 5/17 Graph Models 5/15 Security 5/16 Personalization! 5/17 Sarcasm, Sentiment, and Language 5/15 Knowledge Synthesis 5/16 Crowdsourcing and Human Computation 5/17 Economics, Monetization, and Online Markets 5/15 Knowledge Analysis and Querying 5/16 Text Classification and Relation Extraction 5/17 Social Recommendation and Experimentation 5/15 Communities, Complaints, and Collective Action 5/16 Systems and Infrastructure 5/17 Topic Modeling and Representation 5/15 Network Applications 5/16 Network and Analysis 5/15 Privacy and Trust 5/16 Mobile and Ubiquitous Computing Research Track/:0<&  = > (@ 
  4. Day1-Day2 1. WorkshopInternational Working on Modeling Social Media 2. TutorialA/B

    Testing at Scale (Microsoft) 3. TutorialOnline User Engagement (Spotify)! 4. BIGRecommending and Searching, Research @ Spotify 5. TutorialPrivacy-preserving Data Mining in Industry (LinkedIn) Day3-Day5 • Keynote, Poster Session • Research Track           Sponsor Booth Day1-Day223 Workshop22 Tutorial Day3-Day512 Research TrackPoster SessionKeynote
  5. Tutorial: Online User Engagement Slidesh(ps://onlineuserengagement.github.io/ Speaker: Mounia Lalmas Research Director

    & Head of Tech Research @Spo?fy 20HKUser Engagement Personaliza?on Track Chair BIG Track Plenary Speaker Topic 1.Metrics • '%'$ 3E?B7F@1C =N • .7F  96 #& 8OQI)M ->.30(; QI)M User Engagement /PQIA<4 L* %! 2.Op<miza<on • A/B "' 5D+ • WSDM2019 QI :, Spo?fy 8OJG :,
  6. '"?'# FK$)(!!(%*A3VU .Sleep$)(!!(%*A3VU -> Sleep$)(!Dwell time O 9=  ->!(%*A3VU&$*

    * $M -L ! Tutorial: Online User Engagement Slideshttps://onlineuserengagement.github.io/ Paolo Dragone, Rishabh Mehrotra and Mounia Lalmas. Deriving User- and Content-specific Rewards for Contextual Bandits. WWW 2019. MetricsDwell Ame as streaming Ame SpoDfyContextual BanditWC4GI: • DZ!(%*A32N/30T,F@H • Q+BX&* *86>\' (* 'R!(%*A3VU 51'<YWCP7 • ;EDZS2 25,F@H[0J"
  7.   Exploring Perceived Emotional Intelligence of Personality-Driven Virtual Agents

    in Handling User Challenges O; 5?=L`D 8T 3'(VA) Emotional IntelligenceRC Listening Between the Lines: Learning Personal Attributes from Conversations :h%!'MB]g9W EOVQPY Dual Neural Personalized Ranking /U %,UfcPairwise033d 033<IZ4 Dynamic Ensemble of Contextual Bandits to Satisfy Users' Changing Interests! /@Nb7 ^_YK[ >A X6 3%!#.2*3&$'21",Z4 Quality Effects on User Preferences and Behaviors in Mobile News Streaming Je/F\+(*$ ).!a HSG -&2Z4 Research Track - Personalization Day4 10:30-12:30 / Chair: Mounia Lalmas
  8.  • • Ar#cle1, Ar#cle4 Ar#cle2 t3 Ar#cle3 t1,t2,t4 

    • γ -Restart algorithm discounted-UCB algorithm >> discount factor • Cao >> 1 • Wu 2 contextual bandit model 1 1 >> 1 context Research Track - Personalization: Dynamic Ensemble of Contextual Bandits to Satisfy User’s Changing Interests admissible
  9. . 3 132! e n mu p n bs i

    o . 3 3 1" n a i o n a ld t 1 3 . 22 132# r n a i o e x r Expected Reward !" $ % & ' $ & % ' ( ⛹ * + ( ⛹ * + cn A S B Time Research Track - Personaliza2on: Dynamic Ensemble of Contextual Bandits to Sa2sfy User’s Changing Interests #$% ∗ #$%'( ∗ )"( ( ∆+ !" ≠ 0 #$% ∗ #$%'( ∗ )". $ ∆+ !" = 0 feture vector : )"0 user preference vector : #∗ + !" = )" 1# ∗ )"( , )". , … )"4
  10. 9,F[p}dw?j>"*<2 )-08';5<3(14i= & aMKHo   ~v)7  Gep}dEIf>"5<3(14Sz *<2)-4Yy%D|

     Szt]5<3(1473;UN% xP" hXZgyTus%\hO " " t]5<3(1473;UN"Bandit expertexpert\hrQ%q@"Bandit auditor%lm';+:.6         "  {LJW  N_3/3R3/JWRegret%oC  $DenBand `Bw?k%JV  c f>CTR\h^n# baseline !Ab# Research Track - Personaliza2on: Dynamic Ensemble of Contextual Bandits to Sa2sfy User’s Changing Interests
  11. Q.{1FKc+@7)?@0UD&-:4gvl A.gv(‡† Qfux AC • pˆ‚(]}  eˆ‚,=21*28 RF 

    L%`suˆ‚(z![H(j&   • InM„(*2834&koX m & • rO …|~ "N|ubE & • \^AG-60‰#fbE <19.>@d $&(y  • WZ€(T&tJuiVhSdBƒaP _'&wY&!; 5/=q 2020TAIPEI WWW 2019 UD?:4 h/ps://engineering.linecorp.com/ja/blog/the-web-conference-2019-report/
  12. The Web Conference      Best Poster

    (5681 9 :?< + '2Web4!&$*) #"%03   ,-7;.> "=/   h,ps://twi,er.com/zijianwang30/status/1129130581806047232
  13. Tutorial • Online User Engagement: Metrics and Op4miza4on • h8ps://onlineuserengagement.github.io/

    Reference Paper • Deriving User- and Content-specific Rewards for Contextual Bandits • h8ps://labtomarket.files.wordpress.com/2019/03/www2019_re wards.pdf • Dynamic Ensemble of Contextual Bandits to Sa4sfy Users' Changing Interests • h8p://www.cs.virginia.edu/~hw5x/paper/WWW2019- DenBandit-Wu.pdf • Exploring Perceived Emo4onal Intelligence of Personality-Driven Virtual Agents in Handling User Challenges • h8ps://dl.acm.org/cita4on.cfm?id=3313400 • Listening Between the Lines: Learning Personal A8ributes from Conversa4ons • h8ps://arxiv.org/abs/1904.10887 • Dual Neural Personalized Ranking • h8ps://dl.acm.org/cita4on.cfm?id=3313585 • Quality Effects on User Preferences and Behaviors in Mobile News Streaming • h8p://www.thuir.org/group/~YQLiu/publica4ons/WWW2019Lu.pdf
  14. Dynamic Ensemble of Contextual Bandits ) • b !" o

    #$ • b o / Ø admissibleFbandit expert d c Ø admissibleDF id BFexpert auditor m Expected Reward T . 1 1,2 ls t ( . T . 1 1,2 rDe B n ( . 2-, %&'$," = 1 +" $ , -∈/0 1 %&'$," (3) 5 3$," = arg 39:-∈/0 1 ( ̂ <$," 3 − ' $," > ) !" = arg 3!?$∈@ %&'$," ̂ <$," 3 ≤ lsvg a =Badness a ! 3B ! 3C " # $ % " $ # % & ⛹ ( ) & ⛹ ( ) " 3B admissible & admissibleDF expert Time Research Track - Personaliza>on: Dynamic Ensemble of Contextual Bandits to Sa>sfy User’s Changing Interests
  15. Research Track -Personaliza2on: Dynamic Ensemble of Contextual Bandits to Sa2sfy

    User’s Changing Interests Dynamic Ensemble of Bandit Experts ; DenBand  o B M A is C Bb d c b pD • 3( - R v h W L M g nF U • 3 3( - S g L TT t B ( ) M A is • ) - R e Y a Wr L M • 3 1 3 L 1 l L