linear function m=Md+v (M:matrix and V: vector) can be simplified by stating mean and covariance, • Consider model parameter m 1 which is mean of data, • That is, M = [ 1, 1, 1, . . . , 1]/N and v = 0. Suppose that the data are uncorrelated and all have the same mean (d) and variance σ d 2.. • Hence model parameter m 1 has distribution P (m 1 ) denan mean m 1 =d dan variance σ d 2=σ d 2 /N. So, m 1 close to the true mean is proportional to N-1/2 2.3 Function of Random Variables 〈d 〉=M 〈d 〉+v [cov m]=M [cov d ] MT 〈m 1 〉=M 〈d 〉 (m 1 )=M [cov d ] MT =σ d 2 /N m 1 =1/N ∑ i N d i =(1/N )[1,1,1,...,1]d