Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
200
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
110
How software can feed the World
barrachri
1
170
How to fight with yourself and win.
barrachri
0
310
Introduction to Statistics with Python
barrachri
0
390
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
990
Other Decks in Technology
See All in Technology
DataOpsNight#8_Terragruntを用いたスケーラブルなSnowflakeインフラ管理
roki18d
1
320
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
440
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9k
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
860
extension 現場で使えるXcodeショートカット一覧
ktombow
0
190
神回のメカニズムと再現方法/Mechanisms and Playbook for Kamikai scrumat2025
moriyuya
4
330
許しとアジャイル
jnuank
1
100
Why React!?? Next.jsそしてReactを改めてイチから選ぶ
ypresto
10
4.2k
AI ReadyなData PlatformとしてのAutonomous Databaseアップデート
oracle4engineer
PRO
0
150
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
77k
LLMアプリケーション開発におけるセキュリティリスクと対策 / LLM Application Security
flatt_security
7
1.8k
組織観点からIAM Identity CenterとIAMの設計を考える
nrinetcom
PRO
1
150
Featured
See All Featured
Docker and Python
trallard
46
3.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.6k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
We Have a Design System, Now What?
morganepeng
53
7.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
How to Ace a Technical Interview
jacobian
280
23k
Balancing Empowerment & Direction
lara
4
670
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Fireside Chat
paigeccino
40
3.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None