$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
210
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
110
How software can feed the World
barrachri
1
170
How to fight with yourself and win.
barrachri
0
320
Introduction to Statistics with Python
barrachri
0
420
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
1k
Other Decks in Technology
See All in Technology
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
510
ガバメントクラウド利用システムのライフサイクルについて
techniczna
0
190
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
230
MLflowで始めるプロンプト管理、評価、最適化
databricksjapan
1
250
JEDAI認定プログラム JEDAI Order 2026 エントリーのご案内 / JEDAI Order 2026 Entry
databricksjapan
0
130
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
820
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
170
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
140
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
1
280
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
210
5分で知るMicrosoft Ignite
taiponrock
PRO
0
390
因果AIへの招待
sshimizu2006
0
980
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Making Projects Easy
brettharned
120
6.5k
We Have a Design System, Now What?
morganepeng
54
7.9k
Unsuck your backbone
ammeep
671
58k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Designing for humans not robots
tammielis
254
26k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None