Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
barrachri
April 20, 2018
Technology
1
220
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
110
How software can feed the World
barrachri
1
180
How to fight with yourself and win.
barrachri
0
320
Introduction to Statistics with Python
barrachri
0
430
EuroPython 2015 and the future
barrachri
2
120
Start with Flask
barrachri
3
190
Django & Docker
barrachri
6
1.1k
Other Decks in Technology
See All in Technology
新規事業における「一部だけどコア」な AI精度改善の優先順位づけ
zerebom
0
450
全員が「作り手」になる。職能の壁を溶かすプロトタイプ開発。
hokuo
1
660
20260129_CB_Kansai
takuyay0ne
1
260
AWS Devops Agent ~ 自動調査とSlack統合をやってみた! ~
kubomasataka
3
320
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
セキュリティ はじめの一歩
nikinusu
0
1.4k
~Everything as Codeを諦めない~ 後からCDK
mu7889yoon
3
180
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
1
110
GCASアップデート(202510-202601)
techniczna
0
240
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
340
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
1.5k
ブロックテーマでサイトをリニューアルした話 / 2026-01-31 Kansai WordPress Meetup
torounit
0
340
Featured
See All Featured
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
87
Docker and Python
trallard
47
3.7k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Design in an AI World
tapps
0
140
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Building Applications with DynamoDB
mza
96
6.9k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
51
Designing for humans not robots
tammielis
254
26k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
59
42k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
440
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
55
49k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None