Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
180
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
95
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
280
Introduction to Statistics with Python
barrachri
0
340
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
170
Django & Docker
barrachri
6
940
Other Decks in Technology
See All in Technology
【JAWS-UG大阪 reInvent reCap LT大会 サンバが始まったら強制終了】“1分”で初めてのソロ参戦reInventを数字で振り返りながら反省する
ttelltte
0
140
2025年の挑戦 コーポレートエンジニアの技術広報/techpr5
nishiuma
0
150
0→1事業こそPMは営業すべし / pmconf #落選お披露目 / PM should do sales in zero to one
roki_n_
PRO
1
1.6k
Evolving Architecture
rainerhahnekamp
3
260
Azureの開発で辛いところ
re3turn
0
240
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!事例のご紹介+座学②
siyuanzh09
0
110
生成AIのビジネス活用
seosoft
0
110
[JSAC 2025 LT] Introduction to MITRE ATT&CK utilization tools by multiple LLM agents and RAG
4su_para
1
100
デジタルアイデンティティ技術 認可・ID連携・認証 応用 / 20250114-OIDF-J-EduWG-TechSWG
oidfj
2
700
あなたの人生も変わるかも?AWS認定2つで始まったウソみたいな話
iwamot
3
870
月間60万ユーザーを抱える 個人開発サービス「Walica」の 技術スタック変遷
miyachin
1
150
Kotlin Multiplatformのポテンシャル
recruitengineers
PRO
2
150
Featured
See All Featured
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.4k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Bash Introduction
62gerente
610
210k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.2k
Faster Mobile Websites
deanohume
305
30k
Building an army of robots
kneath
302
45k
Docker and Python
trallard
43
3.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
39
1.9k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None