Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
220
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
110
How software can feed the World
barrachri
1
180
How to fight with yourself and win.
barrachri
0
320
Introduction to Statistics with Python
barrachri
0
420
EuroPython 2015 and the future
barrachri
2
120
Start with Flask
barrachri
3
190
Django & Docker
barrachri
6
1k
Other Decks in Technology
See All in Technology
1万人を変え日本を変える!!多層構造型ふりかえりの大規模組織変革 / 20260108 Kazuki Mori
shift_evolve
PRO
5
640
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
310
会社紹介資料 / Sansan Company Profile
sansan33
PRO
11
390k
AI との良い付き合い方を僕らは誰も知らない (WSS 2026 静岡版)
asei
1
210
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
Node vs Deno vs Bun 〜推しランタイムを見つけよう〜
kamekyame
1
160
人工知能のための哲学塾 ニューロフィロソフィ篇 第零夜 「ニューロフィロソフィとは何か?」
miyayou
0
330
RALGO : AIを組織に組み込む方法 -アルゴリズム中心組織設計- #RSGT2026 / RALGO: How to Integrate AI into an Organization – Algorithm-Centric Organizational Design
kyonmm
PRO
3
530
戰略轉變:從建構 AI 代理人到發展可擴展的技能生態系統
appleboy
0
180
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
140
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
600
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.6k
Featured
See All Featured
Unsuck your backbone
ammeep
671
58k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
360
How to Ace a Technical Interview
jacobian
281
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Balancing Empowerment & Direction
lara
5
830
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
27
Information Architects: The Missing Link in Design Systems
soysaucechin
0
730
Between Models and Reality
mayunak
1
150
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None