Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
180
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
97
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
290
Introduction to Statistics with Python
barrachri
0
350
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
950
Other Decks in Technology
See All in Technology
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
300
30代エンジニアが考える、エンジニア生存戦略~~セキュリティを添えて~~
masakiokuda
4
2k
ひまプロプレゼンツ 「エンジニア格付けチェック 〜春の公開収録スペシャル〜」
kaaaichi
0
110
Symfony in 2025: Scaling to 0
fabpot
2
170
LINEギフトのLINEミニアプリアクセシビリティ改善事例
lycorptech_jp
PRO
0
240
コード品質向上で得られる効果と実践的取り組み
ham0215
2
200
モンテカルロ木探索のパフォーマンスを予測する Kaggleコンペ解説 〜生成AIによる未知のゲーム生成〜
rist
4
1.1k
Go製のマイグレーションツールの git-schemalex の紹介と運用方法
shinnosuke_kishida
1
400
ソフトウェアプロジェクトの成功率が上がらない原因-「社会価値を考える」ということ-
ytanaka5569
0
130
ClineにNext.jsのプロジェクト改善をお願いしてみた / 20250321_reacttokyo_LT
optim
1
1.3k
ペアプログラミングにQAが加わった!職能を超えたモブプログラミングの事例と学び
tonionagauzzi
1
140
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
20k
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
33
6.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
16
1.1k
A Modern Web Designer's Workflow
chriscoyier
693
190k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
The Invisible Side of Design
smashingmag
299
50k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
Speed Design
sergeychernyshev
28
860
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None