Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Mateusz Herych - LIKE '%smth%' is not the way
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Base Lab
February 12, 2014
Programming
0
150
Mateusz Herych - LIKE '%smth%' is not the way
Droidcon IT, Turin Feb 2014
Base Lab
February 12, 2014
Tweet
Share
More Decks by Base Lab
See All by Base Lab
Szymon Sobczak - Hadoop + Storm
baselab
0
100
Slawek Skowron - Monitoring @ Scale
baselab
0
130
Karol Nowak - Monitoring clock drift in Amazon EC2 environment
baselab
0
120
Tomasz Nowak - Web Application Testing made easy
baselab
0
300
Szymon Pawlik - UX i Automatyzacja czyli jak testerzy mogą poprawić produkt.
baselab
0
250
Jerzy Chałupski - Offline mode in Android apps
baselab
3
490
Jerzy Chałupski - Data model on Android
baselab
4
240
Other Decks in Programming
See All in Programming
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
710
Fragmented Architectures
denyspoltorak
0
150
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
CSC307 Lecture 07
javiergs
PRO
0
550
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
200
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
160
CSC307 Lecture 02
javiergs
PRO
1
770
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
120
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
331
21k
Docker and Python
trallard
47
3.7k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
170
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
140
We Are The Robots
honzajavorek
0
160
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
92
Side Projects
sachag
455
43k
RailsConf 2023
tenderlove
30
1.3k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Rails Girls Zürich Keynote
gr2m
96
14k
Google's AI Overviews - The New Search
badams
0
900
Transcript
None
Mateusz Herych Android Developer - Base CRM Co-organizer - GDG
Krakow Co-organizer - KrakDroid
Stats
LIKE ‘%smth%’
LIKE ‘%smth%’ is not the way.
Search
Search Offline.
Why?
Why? Let the backend guys do the job
Why? Internet is not everywhere.
Why? Internet is not everywhere. It takes time. (especially SSL)
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Why? Internet is not everywhere. It takes time. (especially SSL)
And sometimes it’s shitty.
Sure, some apps don’ t really need it You need
an Internet to order that taxi anyway
Do you keep offline content? Let your users navigate fast.
Did I say fast?
How? Let’s go deeper.
Context
CRM - Contacts - Deals - Notes - ...
CRM - Contacts (~100) - Deals (~50) - Notes (~100)
- ... 2009
select id from deals where name LIKE ‘% something%’
CRM - Contacts (~40K) - Deals (~20K) - Notes (~300K)
- ...
None
HOW DOES “LIKE” WORKS LIKE?
Docs saying
I tried to put all the conditions that need to
be satisfied so SQLite can use indices combined with LIKE operator. Docs saying
They didn’t fit. Docs saying
http://www.sqlite. org/optoverview.html Docs saying
Hey, you, SQLite! EXPLAIN (my) QUERY PLAN
PRAGMA case_sensitive_like=1;
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name);
PRAGMA case_sensitive_like=1; CREATE INDEX search_index on deals(name); SELECT id FROM
deals WHERE name LIKE ‘Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘Some%’; SEARCH TABLE deals USING COVERING INDEX search_index (name>? AND name<?) (~31250 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’;
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows)
EXPLAIN QUERY PLAN SELECT id FROM deals WHERE name LIKE
‘%Some%’; SCAN TABLE deals (~500000 rows) (And then you die)
first_name || ‘ ‘ || last_name? UNIONs, complicated VIEWs? Like
is NOT the way to go.
What people think SQLite is
What SQLite really is
SQLite is powerful Not kidding.
FTS3 Full Text Search
CREATE VIRTUAL TABLE search USING fts3 (tokens)
? CREATE VIRTUAL TABLE search USING fts3 (tokens INT)
Nope. PRAGMA table_info(search); cid|name|type|notnull|dflt_value|pk 0|word||0||0
All is TEXT, except for hidden rowid.
What is virtual table? Imagine it’s a Java interface. interface
VirtualTable { void insert(Params p); void update(Params p); // etc, also createTable. }
What is a virtual table? class Fts3 implements VirtualTable {
// … }
None
MATCH Let’s go make some magic.
SELECT * FROM search WHERE content MATCH ‘something’
SELECT rowid, * FROM search WHERE content MATCH ‘something’ rowid|word
1|something 2|not something special 3|SoMeThInG
SELECT rowid, * FROM search WHERE content MATCH ‘some* spe*’
rowid|word 2|not something special
CREATE VIRTUAL TABLE search USING fts3 (author, lyrics)
SELECT * FROM search WHERE lyrics MATCH ‘author:Giorgio Synthesizer author
|lyrics Giorgio Moroder|..Why don’t I use a synthesizer...
Cool?
Cool? Look at this.
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
SELECT * FROM search WHERE lyrics MATCH ‘why NEAR/3 synthesizer’
author |lyrics Giorgio Moroder|..Why don’t I use synthesizer...
Tips.
1. Your FTS vtable should contain only tokens. Eventually divided
into sections.
2. Link your FTS table’s records with other table (containing
real object’s id and type) using rowid.
3. Remember. FTS is fast enough for searching purposes. But
it’s always slower than ‘=’ based query on indexed field.
4. EXPLAIN QUERY PLAN doesn’t work for fts tables. Try
to measure it with .timer ON.
5. ???
6. QUESTIONS TIME!