Upgrade to Pro — share decks privately, control downloads, hide ads and more …

CodeAgentとMCPで実現するデータ分析エージェント

Avatar for CyberAgent CyberAgent
May 27, 2025
55

 CodeAgentとMCPで実現するデータ分析エージェント

Avatar for CyberAgent

CyberAgent

May 27, 2025
Tweet

More Decks by CyberAgent

Transcript

  1. 自己紹介 村脇 光洋 職種:サーバーサイド 所属 : AI事業本部 アプリ運用カンパニー ➡ AI

    POS カンパニー (2025/1~) 業務内容: ◦ 小売業/メーカー向けデータ分析SaaS開発 2
  2. エージェントの実装 20 • フレームワークにHugging Face社の「smolagents」を採用 • 特徴 ◦ 動作原理にCodeActを採用 ◦

    最小限の機能。ワークフローが組めない ◦ MCP対応 ◦ OpenTelemetry準拠 ◦ LLMモデルの切り替えが容易(litellm)
  3. smolagentsの特徴 : CodeAct 21 関連 ReAct: https://arxiv.org/abs/2210.03629, CodeAct: https://arxiv.org/abs/2402.01030 (画像はCodeActの論文より引用)

    従来のエージェントは、ツールとツールの繋ぎ込みに課題があった • 既存アプローチではjsonがtoolの インターフェース • toolの結果が、別のtoolへと渡さ れる時に欠損する • 扱う値の変換も容易ではない • CodeActはツール呼び出しを Python上で行うことで、それら の課題を解決
  4. 技術の発展を考慮したチームリソースの投下 32 自社が投資しなくても進歩していく 自社が投資しないと進歩しない エージェント最適化 選択肢が移り変わりやすい 選択肢が変化しづらい MCP対応 LLMリーダブルに情報を整備 すぐ乗り換えられる

    ように、軽量に実装 新しいMCPクライア ントをすぐに試すこ とができるので、 できるだけ対応 一定コストを払って整備 例: APIドキュメントを充実化 データベースを一般的な規格にし て、固有表現をなるべく排除。メ タデータを可能な限り付与