Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
The Walking Dead - A Survival Guide to Resilien...
Search
Michael Nitschinger
April 23, 2015
Programming
0
370
The Walking Dead - A Survival Guide to Resilient Reactive Applications
This talk was given at JAX 2015 in Mainz.
Michael Nitschinger
April 23, 2015
Tweet
Share
More Decks by Michael Nitschinger
See All by Michael Nitschinger
High Performance JVM Networking with Netty
daschl
5
1.2k
Reactive Data Access with RxJava... and N1QL!
daschl
0
190
Spark with Couchbase
daschl
0
150
Reactive Data Access with RxJava ... and N1QL!
daschl
0
180
The Walking Dead - A Survival Guide to Resilient Reactive Applications
daschl
0
210
State of the Art JVM Networking with Netty
daschl
2
440
The Walking Dead - A Survival Guide to Resilient Reactive Applications
daschl
1
440
The Walking Dead - A Survival Guide to Resilient Applications
daschl
0
1.3k
Building a Reactive Database Driver on the JVM
daschl
2
950
Other Decks in Programming
See All in Programming
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
410
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
520
目的で駆動する、AI時代のアーキテクチャ設計 / purpose-driven-architecture
minodriven
11
3.9k
関数の挙動書き換える
takatofukui
4
770
ZOZOにおけるAI活用の現在 ~モバイルアプリ開発でのAI活用状況と事例~
zozotech
PRO
8
4.1k
分散DBって何者なんだ... Spannerから学ぶRDBとの違い
iwashi623
0
170
Evolving NEWT’s TypeScript Backend for the AI-Driven Era
xpromx
0
270
GeistFabrik and AI-augmented software development
adewale
PRO
0
260
tparseでgo testの出力を見やすくする
utgwkk
1
140
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
480
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
110
『実践MLOps』から学ぶ DevOps for ML
nsakki55
2
560
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
700
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Site-Speed That Sticks
csswizardry
13
990
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Balancing Empowerment & Direction
lara
5
780
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
The Cult of Friendly URLs
andyhume
79
6.7k
Building an army of robots
kneath
306
46k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
Transcript
Michael Nitschinger | Couchbase, Inc. The Walking Dead A Survival
Guide to Reactive Resilient Applications
the right Mindset 2
– U.S. Marine Corps “The more you sweat in peace,
the less you bleed in war.” 3
4
5
Not so fast, mister fancy tests! 6
What can go wrong? Always ask yourself 7
Fault Tolerance 101 8
Fault Error Failure A fault is a latent defect that
can cause an error when activated. 9
Fault Error Failure Errors are the manifestations of faults. 10
Fault Error Failure Failure occurs when the service no longer
complies with its specifications. 11
Fault Error Failure Errors are inevitable. We need to detect,
recover and mitigate them before they become failures. 12
Reliability is the probability that a system will perform failure
free for a given amount of time. MTTF Mean Time To Failure MTTR Mean Time To Repair 13
Availability is the percentage of time the system is able
to perform its function. availability = MTTF MTTF + MTTR 14
Expression Downtime/Year Three 9s 99.9% 525.6 min Four 9s 99.99%
52.56 min Four 9s and a 5 99.995% 26.28 min Five 9s 99.999% 5.256 min Six 9s 99.9999% 0.5256 min 100% 0 15
Pop Quiz! Edge Service User Service Session Store Data Warehouse
Wanted: 99.99% Availability ??? ??? ??? 16
Pop Quiz! Edge Service User Service Session Store Data Warehouse
Wanted: 99.99% Availability 99.99% 17 99.99% 99.99%
Pop Quiz! Edge Service User Service Session Store Data Warehouse
Wanted: 99.99% Availability ~99.999% ~99.999% ~99.999% 18
Fault Tolerant Architecture 19
Units of Mitigation are the basic units of error containment
and recovery. 20
Escalation is used when recovery or mitigation is not possible
inside the unit. 21
Escalation 22 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Escalation 23 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Escalation 24 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Escalation 25 Cluster Node Node Service Service Service Service Service
Endpoint Endpoint Endpoint Endpoint Endpoint
Redundancy Cost Active/Active Active/Standby N+M Active/Passive Cost Time To Recover
26
The Fault Observer receives system and error events and can
guide and orchestrate detection and recovery Unit Unit Observer Listener Listener Unit Unit 27
28
29
Detecting Errors 30
A silent system is a dead system. 31
A System Monitor helps to study behaviour and to make
sure it is operating as specified. 32 http://cdn-www.airliners.net/aviation-photos/photos/9/2/1/0982129.jpg
https://github.com/Netflix/Turbine 33
Periodic Checking Heartbeats monitor tasks or remote services and initiate
recovery Routine Exercises prevent idle unit starvation and surface malfunctions 34
35 Encoder( Encoder( Ne*y( Writes( Ne*y( Reads( Decoder( Decoder( Event
on Idle No Traffic Endpoint
Riding over Transients is used to defer error recovery if
the error is temporary. “‘Patience is a virtue’ to allow the true signature of an error to show itself.” - Robert S. Hanmer 36
37 The Leaky Bucket
And more! • Complete Parameter Checking • Watchdogs • Voting
• Checksums • Routine Audits 38
Recovery and Mitigation of Errors 39
Timeout to not wait forever and keep holding up the
resource. 40 X
Failover to a redundant unit when the error has been
detected and isolated. Cost Active/Active Active/Standby N+M Cost Time To Recover Redundancy Reminder 41
Intelligent Retries Time between Retries Number of Attempts Fixed Linear
Exponential 42
Restart can be used as a last resort with the
trade-off to lose state and time. 43
Fail Fast to shed load and give a partial great
service than a complete bad one. Boundary 44
Backpressure & Batching! 45
Case Study: Hystrix https://raw.githubusercontent.com/wiki/Netflix/Hystrix/images/hystrix-flow-chart-original.png 46
And more! • Rollback • Roll-Forward • Checkpoints • Data
Reset Recovery Mitigation • Bounded Queuing • Expansive Controls • Marking Data • Error Correcting Codes 47
And more! • Rollback • Roll-Forward • Checkpoints • Data
Reset Recovery Mitigation • Bounded Queuing • Expansive Controls • Marking Data • Error Correcting Codes 48
Recommended Reading 49
Patterns for Fault-Tolerant Software by Robert S. Hanmer 50
Release It! by Michael T. Nygard 51
Announcement CB Server 4.0 dp! 52 http://blog.couchbase.com/introducing-developer-preview-for-couchbase-server-4.0
Any Questions? 53
twitter @daschl email
[email protected]
Thank you! 54