Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Databricksによるセキュアで効率的なデータエンジニアリングの実現
Search
Databricks Japan
May 10, 2024
Technology
0
160
Databricksによるセキュアで効率的なデータエンジニアリングの実現
Databricks Japan
May 10, 2024
Tweet
Share
More Decks by Databricks Japan
See All by Databricks Japan
Databricks Appのご紹介
databricksjapan
0
870
Databricks AI/BI Genie 自然言語を用いたインテリジェンスなデータ分析
databricksjapan
0
220
生成AIとレイクハウス・ガバナンス
databricksjapan
1
140
データプロダクトにおけるCI/CD: Databricks Asset Bundleとは?
databricksjapan
0
170
Databricks クリーンルームについてのご紹介
databricksjapan
0
240
Unity Catalog データ分離設計ガイド / Unity Catalog Data Isolation Design Guide
databricksjapan
1
690
機械学習モデルの運用と実用的なアプローチ
databricksjapan
0
740
Unity Catalogの自動有効化
databricksjapan
1
160
Unity Catalog 技術ディープダイブ
databricksjapan
1
480
Other Decks in Technology
See All in Technology
Incident Response Practices: Waroom's Features and Future Challenges
rrreeeyyy
0
160
AGIについてChatGPTに聞いてみた
blueb
0
130
アジャイルでの品質の進化 Agile in Motion vol.1/20241118 Hiroyuki Sato
shift_evolve
0
150
これまでの計測・開発・デプロイ方法全部見せます! / Findy ISUCON 2024-11-14
tohutohu
3
370
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
750
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
6
640
インフラとバックエンドとフロントエンドをくまなく調べて遅いアプリを早くした件
tubone24
1
430
TypeScriptの次なる大進化なるか!? 条件型を返り値とする関数の型推論
uhyo
2
1.7k
マルチプロダクトな開発組織で 「開発生産性」に向き合うために試みたこと / Improving Multi-Product Dev Productivity
sugamasao
1
310
Can We Measure Developer Productivity?
ewolff
1
150
Terraform未経験の御様に対してどの ように導⼊を進めていったか
tkikuchi
2
430
【Pycon mini 東海 2024】Google Colaboratoryで試すVLM
kazuhitotakahashi
2
520
Featured
See All Featured
Ruby is Unlike a Banana
tanoku
97
11k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Side Projects
sachag
452
42k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Agile that works and the tools we love
rasmusluckow
327
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
0
96
The World Runs on Bad Software
bkeepers
PRO
65
11k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
KATA
mclloyd
29
14k
Transcript
Databricksによる セキュアで効率的なデータエ ンジニアリングの実現
山崎 隼也 Yamazaki Junya 株式会社マネーフォワード データ戦略室 データエンジニアリング部 2021年2月にマネーフォワードに入社、全社横 断分析基盤のリプレイスを実施、現在の分析基 盤を作成。 最近は社内のRAG環境のインフラ構築に従事
しています。
目次 - 分析基盤イントロダクション - Databricksの用途 - 前環境の課題点 - セキュリティ要件への対応
- データ利用の最適化 - チューニングされたSparkによるパフォーマンス向上 - 閉塞環境下での工夫 - DevOpsの改善とコード管理 - 効果的な権限管理とリソースの最適化 - 今後の展望 - まとめと要望
分析環境 イントロダクション
分析基盤 全体像 3つの分析環境 - AWS databricks - セキュアな分析環境 - GCP Bigquery
in tokyo - フォーマルな分析環境 - GCP Bigquery in US - カジュアルな分析環境
3つの分析環境 - AWS databricks - セキュアな分析環境 - 論文 - 管理会計
- MLモデル開発 - GCP Bigquery in tokyo - フォーマルな分析環境 - GCP Bigquery in US - カジュアルな分析環境 分析基盤 全体像
Databricksの用途
注釈 https://www.databricks.com/jp/customers/moneyforward ここで触れてます
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点
AWS Cloud AWS account AWS account VDI : : Source
DB Squid Domain list Databricksの用途 前環境の課題点 プロキシサーバの管理が大変 • 疎通可能なドメインをホワイトリスト管理 ◦ サービス追加のたびに確認が必要 ◦ 意図しないドメイン変更なども発生
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点 データフローが煩雑 • 論文執筆用途で過去断面への 参照用途がある • 煩雑ゆえエラー対応の 工数も多くかかっていた
AWS Cloud AWS account AWS account VDI : : Source
DB Databricksの用途 前環境の課題点 ユーザ環境の管理コストが高い • Jupyter on EMRとAthenaで構築 ◦ リソースとユーザごとの権限管理が必 要 ◦ 単一クラスタのため、各用途最適の環 境を用意することが難しい
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Databricksの用途 移行後
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Databricksの用途 セキュリティ要件への対応 Squid Domain list 管理ドメインの単一化 • ワークスペースのドメインを許可 ◦ Databricks の各サービスを 利用可能 →メンテナンスフリー →Privatelinkで安心
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Squid Domain list Databricksの用途 データ利用の最適化 NotebookをDatabricksで管理 • ユーザ自身でNotebookを自由に ◦ 作成 ◦ 共有 ◦ 秘匿 • またクラスタのRestart権限を付与 することで、使う時間帯だけ立ち上 げる運用が効率化
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI Squid Domain list Databricksの用途 チューニングされた Sparkによるパフォーマンス向上 ETLをマネージドSpark • バッチ処理が2~3時間 から1時間以内に • Delta化処理が簡単 に
Databricksの用途 移行後 • セキュリティ要件への対応 • データ利用の最適化 • チューニングされたSparkによ るパフォーマンス向上 • クラウドベンダーからの分離によ
るポータビリティ向上
https://www.databricks.com/jp/customers/moneyforward ここで触れてます Databricksの用途 移行後
閉塞環境下での 工夫
AWS account AWS Cloud AWS account Control Plane Data Plane
Notebook : : Source DB VDI 閉塞環境下での工夫 移行後
AWS Cloud AWS account Control Plane Data Plane Notebook :
閉塞環境下での工夫 git連携 Push Github actions Git管理を実現 • Notebook • ETL
AWS account AWS Cloud Control Plane Data Plane Notebook :
VDI 閉塞環境下での工夫 クラスタ管理 SSO Division A Division B Common クラスタ最適化 • ユーザをチーム単位でグ ループ化 • グループ毎にクラスタを 用意 • ユースケースに沿って 調整 ◦ ライブラリ ◦ インスタンスタイプ ◦ スケール数 • Jobクラスタの利用
今後の展望
今後の展望 first scope 閉塞環境からのMLOps → MLflowで生成したモデルをsagemakerエンドポイントでホスティング second scope 全環境でのML環境の提供 →
Databricks on GCPでノウハウを引き継ぎつつ汎用化していく 泥臭い部分はDatabricksをフル活用してユーザ側に滲み出ないように スマートでセキュアなML環境構築の実現を目指しています
まとめと要望
まとめと要望 まとめ • セキュアな分析、ML環境を低運用コストで • ユーザの声を聞く時間ができた • 浮いた時間でユーザビリティの向上 • クラウドベンダーとの依存が切れてポータビリティ向上
要望 • サーバレスのprivate link対応 • unity catalogへの移行を簡単に
We are hiring!