Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
.NET Day 2025: Enhancing Legal Document Analysi...
Search
.NET Day
August 29, 2025
Technology
0
19
.NET Day 2025: Enhancing Legal Document Analysis with Reflection Agents, Semantic Kernel, and Azure AI Search
.NET Day
August 29, 2025
Tweet
Share
More Decks by .NET Day
See All by .NET Day
.NET Day 2025: How to Lie with AI: Understanding Bias, Ethics, and the Hidden Risks in Machine Learning
dotnetday
0
16
.NET Day 2025: Most Expensive Design Mistakes (Ever) and how to avoid them
dotnetday
0
16
.NET Day 2025: Turbocharged: Writing High-Performance C# and .NET Code
dotnetday
0
27
.NET Day 2025: Developing ASP.NET Core Microservices with Dapr: A practical guide
dotnetday
0
21
.NET Day 2025: Future-Proof Your Blazor Apps with bUnit
dotnetday
0
13
.NET Day 2025: .NET Core Testing: pushing the limits
dotnetday
0
23
.NET Day 2025: The best ways to use the latest OpenAPI features in .NET 9!
dotnetday
0
19
.NET Day 2025: Supercharged Search with Semantic Search and Vector Embeddings
dotnetday
0
14
.NET Day 2025: Tickets to Ride: Conquering Booking Chaos with Resilient .NET Architecture
dotnetday
0
20
Other Decks in Technology
See All in Technology
SES向け、生成AI時代におけるエンジニアリングとセキュリティ
longbowxxx
0
280
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
280
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
380
「アウトプット脳からユーザー価値脳へ」がそんなに簡単にできたら苦労しない #RSGT2026
aki_iinuma
6
1.7k
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
300
2025年の医用画像AI/AI×medical_imaging_in_2025_generated_by_AI
tdys13
0
270
AIエージェントを5分で一気におさらい!AIエージェント「構築」元年に備えよう
yakumo
1
130
M&Aで拡大し続けるGENDAのデータ活用を促すためのDatabricks権限管理 / AEON TECH HUB #22
genda
0
310
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
810
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
440
"人"が頑張るAI駆動開発
yokomachi
1
670
Everything As Code
yosuke_ai
0
470
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
13k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
69
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Chasing Engaging Ingredients in Design
codingconduct
0
92
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
[SF Ruby Conf 2025] Rails X
palkan
0
660
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
34
How GitHub (no longer) Works
holman
316
140k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
Transcript
ENHANCING LEGAL DOCUMENT ANALYSIS WITH REFLECTION AGENTS, SEMANTIC KERNEL, AND
AZURE AI SEARCH
CÉDRIC MENDELIN Software Developer - isolutions AG
AGENDA LLM Basics Customer Project - FTA The Microsoft Way
- Azure AI Services Step-by-Step Improvements - FTA Conclusion
LLM BASICS
None
None
PROMPT History Parameters (Top-P, Temperature) System Message (Persona) Input
What is the current date?
None
None
RAG – RETRIEVAL-AUGMENTED GENERATION Search Engine Data Model User Application
RETRIEVAL STEP Is the document relevant for the query? +
=
EMBEDDINGS Source: https://weaviate.io/blog/how-to-choose-an-embedding-model
VECTOR SEARCH VECTORIZE DATA VECTORIZE QUERY VECTOR SEARCH (COSINE SIMILARITY)
FEDERAL TAX ADMINISTRATION
Federal Tax Administration 4 k
LAWS AND ORDINANCES (XML)
COURT RULING – FTA PUBLICATIONS (PDF)
CHALLENGES Wording/Style of texts Citation requirement Hierarchy in data Amount
of data
AZURE AI SERVICES
AZURE AI SERVICES OpenAI Vision Speech Language Content Safety Face
Document Intelligence Azure AI services AI Search AI Agent Service AI Model Inference AI Foundry
None
SEMANTIC KERNEL • Open-Source SDK • Middleware • Abstraction over
different Models
None
RAG – Azure OpenAI on your data Azure OpenAI Azure
AI Search
None
None
None
What is the current date?
None
None
FUNCTION CALLING
STEP-BY-STEP IMPROVEMENTS FTA
1ST ITERATION
1ST ITERATION Focus on 50 documents Index Laws per article
Index PDFs per page Azure Open AI – on your data Vector Search
AZURE OPENAI – ON YOUR DATA
1ST ITERATION – FEEDBACK Relevant documents not found Hallucination Poor
Answer Quality Other reasons
2ND ITERATION
2ND ITERATION Hybrid Search Prompting Writing Profiles (Persona) Chat Settings
HYBRID SEARCH PIPELINE Vector Search Text Search N Search Results
Derive Vector Query Derive Text Query
HYBRID SEARCH CODE
2ND ITERATION - FEEDBACK Relevant documents not found Hallucination Poor
Answer Quality Other reasons
None
We need more than a gut feeling
LLM EVALUATION
EVALUATION TYPES LLM evaluation How good the foundation models performs
on a certain task. LLM system evaluation How good the LLM performs in your specific use case, on your data, in your domain.
EVALUATION PIPELINE LLM System Evaluation Dataset Evaluators Score Input Reference
Answer Expected Doc Answer
LLM SYSTEM EVALUATION - METRICS Reference-based Reference-free LLM based
MEAI.EVALUATION OVERVIEW • Open-source • Predefined LLM-based evaluators • Interface
for custom-evaluators • Local and Azure Storage Account • In Preview
None
MEAI.EVALUATION.CONSOLE
None
EVALUATION QUESTIONS Question Reference Answer Expected Doc(s) Category
None
EVALUATION RESULTS 0 10 20 30 40 50 60 70
80 90 100 Provided source Applied source Retrieval Step - % of documents provided and applied Vector Search Hybrid Search
EVALUATION RESULTS 0.8 0.948 0.914 0.85 0.948 0.917 0.7 0.75
0.8 0.85 0.9 0.95 1 Relevance Groundedness Cosin Sim Answer Generation – Quality Metrics Vector Search Hybrid Search
3RD ITERATION
3RD ITERATION – RETRIEVAL OPTIMIZATION AI Enrichment Semantic Reranking
AI ENRICHMENT
SEMANTIC RERANKING Vector Search Text Search N Search Results Derive
Vector Query Derive Text Query Reranking
SEMANTIC RERANKING
3RD ITERATION - FEEDBACK Retrieval improved Sometimes poor Answer Quality
Other reasons
EVALUATION RESULTS 0 10 20 30 40 50 60 70
80 90 100 Provided source Applied source Retrieval Step - % of documents provided and applied Vector Search Hybrid Search Hybrid Search with Summary Hybrid Search with Reranking
EVALUATION RESULTS 0.8 0.948 0.914 0.85 0.948 0.917 0.86 0.945
0.917 0.9 0.988 0.927 0.7 0.75 0.8 0.85 0.9 0.95 1 Relevance Groundedness Cosin Sim Answer Generation – Quality Metrics Vector Search Hybrid Search Hybrid Search with Summary Hybrid Search with Reranking
4TH ITERATION
4TH ITERATION – ANSWER GENERATION OPTIMIZATION Reflection Agent
REFLECTION AGENT Writer Agent Critic Agent N Fact Checker Style
Checker Citation Checker
IMPLEMENTATION • Not supported by Azure OpenAI - On your
data • Derive Search Query • Using Azure AI Search SDK + Autogen
None
None
4TH ITERATION - FEEDBACK Other Reason
EVALUATION – EXECUTION TIME 2889 1999 2966 0 500 1000
1500 2000 2500 3000 3500 Azure OYOD - Hybrid Custom - Hybrid Multiagent (with Reranking) ms LLM system evaluation – Mean Execution Time
EVALUATION RESULTS 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
Relevance Groundedness Cos Sim LLM System evaluation – MultiAgent Single Agent MultiAgent
LAST ITERATION
CONCLUSION
SURVEY RESULTS 86% OF ANSWERS RATED POSITIVELY 89% OF THE
USERS WANT TO USE THE SYSTEM PRODUCTIVELY
CONCLUSION • SK is your SDK of choice • Azure
AI Search for unstructured data • Use advanced capabilities • Start Evaluating early • What is your Use case • Business Value & Innovation The dotnet Stack is ready for productive AI Applications