Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

Dynamics and Control in Power Grids and Complex...

Florian Dörfler
October 16, 2024
18

Dynamics and Control in Power Grids and Complex Oscillator Networks

Florian Dörfler

October 16, 2024
Tweet

Transcript

  1. Dynamics and Control in Power Grids and Complex Oscillator Networks

    Florian D¨ orfler Center for Control, Dynamical Systems & Computation University of California at Santa Barbara Center for Nonlinear Studies Los Alamos National Laboratories Department of Energy 1 / 30
  2. Electric Energy & Power Networks Electric energy is critical for

    our technological civilization Purpose of electric power grid: generate/transmit/distribute Op challenges: multiple scales, nonlinear, & complex 2 / 30
  3. Trends, Advances, & Tomorrow’s Power Grid 1 increasing renewables &

    deregulation 2 growing demand & operation at capacity ⇒ increasing volatility & complexity, decreasing robustness margins Rapid technological and scientific advances: 1 re-instrumentation: PMUs & FACTS 2 complex & cyber-physical systems ⇒ cyber-coordination layer for smart grid 3 / 30
  4. The Envisioned Power Grid complex, cyber-physical, & “smart” ⇒ smart

    grid keywords ⇒ interdisciplinary: power, control, comm, optim, comp, physics, . . . industry, & society ⇒ research themes: “understanding & taming complexity” control monitoring optimization complex multi-scale nonlinear distributed comp & comm decentralized physics & dynamics operation & control smart & cyber-physical smart grid 4 / 30
  5. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 4 / 30
  6. Project Samples I 1 Cyber-physical security (with F. Pasqualetti &

    F. Bullo) 2 Coarse-graining of networks (with D. Romeres, I. Dobson, & F. Bullo) 2 10 30 25 8 37 29 9 38 23 7 36 22 6 35 19 4 33 20 5 34 10 3 32 6 2 31 1 8 7 5 4 3 18 17 26 27 28 24 21 16 15 14 13 12 11 1 39 9 2 30 25 37 29 38 23 36 22 35 19 33 20 34 10 32 6 31 1 8 7 5 4 3 18 17 26 27 28 24 21 16 15 14 13 12 11 39 9 10 9 7 6 4 5 3 2 1 8 15 5 12 11 10 7 8 9 4 3 1 2 17 18 14 16 19 20 21 24 26 27 28 31 32 34 33 36 38 39 22 35 6 13 30 37 25 29 23 1 10 8 2 3 6 9 4 7 5 F Fig. 9. The New England test system [10], [11]. The system includes 10 synchronous generators and 39 buses. Most of the buses have constant active and reactive power loads. Coupled swing dynamics of 10 generators are studied in the case that a line-to-ground fault occurs at point F near bus 0 2 4 6 8 10 -5 0 5 10 15 δ i / rad 10 02 03 04 05 0 2 4 6 8 10 -5 0 5 10 15 δ i / rad TIME / s 06 07 08 09 !"#$%&'''%()(*%(+,-.,*%/012-3*%)0-4%5677*%899: !"#$%&' 5 / 30
  7. Project Samples II 3 Distributed wide-area control (with M. Jovanovic,

    M. Chertkov, & F. Bullo) H2 98.4% of centralized control performance rotor speeds local decentralized control wide-area control 15 5 12 11 10 7 8 9 4 3 1 2 17 18 14 16 19 20 21 24 26 27 28 31 32 34 33 36 38 39 22 35 6 13 30 37 25 29 23 1 10 8 2 3 6 9 4 7 5 F 1 10 10 1 single wide-are comm link ! " # $ % & !"'& !" !!'& ! !'& " [s] [rad] ! " # $ % & !"'& !" !!'& ! !'& " [s] [rad] 4 Inverters in microgrids (with J. Simpson-Porco, J.M. Guerrero, & F. Bullo) 6 / 30
  8. Power Grids as Prototypical Complex Networks ⇒ Similar challenges &

    tools in biochemical reaction networks social networks & epidemics transportation networks robotic coordination & sensor ntkws . . . ⇒ Plenty of synergies and cross-fertilization 7 / 30
  9. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 7 / 30
  10. Mathematical Model of Power Transmission Network Pm,i |Vi | ei✓i

    Yij |Vj | ei✓j Yij |Vi | ei✓i 2 10 30 25 8 37 29 9 38 23 7 36 22 6 35 19 4 33 20 5 34 10 3 32 6 2 31 1 8 7 5 4 3 18 17 26 27 28 24 21 16 15 14 13 12 11 1 39 9 |Vi | ei✓i Yij Yik Di Pl,i active power flow on line i j: |Vi ||Vj ||Yij | aij =max power transfer · sin θi − θj power balance at node i: Pi power injection = j aij sin(θi − θj ) (DAE) power network dynamics [A. Bergen & D. Hill ’81]: : swing eq with Pi > 0 Mi ¨ θi + Di ˙ θi = Pi − j aij sin(θi − θj ) • ◦: Pi < 0 and Di ≥ 0 Di ˙ θi = Pi − j aij sin(θi − θj ) 8 / 30
  11. Models of DC Sources with Inverters & Load Models DC

    source with droop-controlled DC/AC power converter [M.C. Chandorkar et. al. ’93]: D(droop) i ˙ θi = P(setpoint) i − j aij sin(θi −θj ) constant current and admittance loads in Kron-reduced network [F. D¨ orfler et al. ’13]: Mi ¨ θi +Di ˙ θi = P(red) i − j a(red) ij sin(θi −θj ) constant motor loads [P. Kundur ’94]: Mi ¨ θi +Di ˙ θi = P(load) i − j aij sin(θi −θj ) |Vi | eiθi Yij Yik Ii Yi,shunt P(load) i |Vi | eiθi Yij 9 / 30
  12. Synchronization in Power Networks Sync is crucial for the functionality

    and operation of the AC power grid. Generators have to swing in sync despite fluctuations/faults/contingencies. Def: ˙ θi = ˙ θj & |θi − θj | bounded ∀ branches {i, j} = sync’d frequencies & constrained active power flows Given: network parameters & topology and load & generation profile Q: “ ∃ an optimal, stable, and robust synchronous operating point ? ” 1 Security analysis [Araposthatis et al. ’81, Wu et al. ’80 & ’82, Ili´ c ’92, . . . ] 2 Load flow feasibility [Chiang et al. ’90, Dobson ’92, Lesieutre et al. ’99, . . . ] 3 Optimal generation dispatch [Lavaei et al. ’12, Bose et al. ’12, . . . ] 4 Transient stability [Sastry et al. ’80, Bergen et al. ’81, Hill et al. ’86, . . . ] 5 Inverters in microgrids [Chandorkar et. al. ’93, Guerrero et al. ’09, Zhong ’11,. . . ] 10 / 30
  13. Synchronization in Complex Oscillator Networks Pendulum clocks & “an odd

    kind of sympathy ” [C. Huygens, Horologium Oscillatorium, 1673] Today’s canonical coupled oscillator model [A. Winfree ’67, Y. Kuramoto ’75] Coupled oscillator model: ˙ θi = ωi − n j=1 aij sin(θi − θj ) n oscillators with phase θi ∈ S1 non-identical natural frequencies ωi ∈ R1 elastic coupling with strength aij = aji undirected & connected graph G(V, E, A) !1 !3 !2 a12 a13 a23 11 / 30
  14. Synchronization in Complex Oscillator Networks applications Coupled oscillator model: ˙

    θi = ωi − n j=1 aij sin(θi − θj ) A few related applications: Sync in Josephson junctions [S. Watanabe et. al ’97, K. Wiesenfeld et al. ’98] Sync in a population of fireflies [G.B. Ermentrout ’90, Y. Zhou et al. ’06] Canonical model of coupled limit cycle oscillators [F.C. Hoppensteadt et al. ’97, E. Brown et al. ’04] Countless sync phenomena in sciences/bio/tech. [S. Strogatz ’00, J. Acebr´ on ’05 et al., F. D¨ orfler et al. ’13] 12 / 30
  15. Synchronization in Complex Oscillator Networks phenomenology and challenges Synchronization is

    a trade-off: coupling vs. heterogeneity ˙ θi = ωi − n j=1 aij sin(θi − θj ) ✓i (t) coupling small & |ωi − ωj | large ⇒ incoherence ✓i (t) coupling large & |ωi − ωj | small ⇒ frequency sync A central question: quantify “coupling” vs. “heterogeneity” [S. Strogatz ’01, A. Arenas et al. ’08, S. Boccaletti et al. ’06] 13 / 30
  16. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 13 / 30
  17. Relating power networks and coupled oscillator models (1) Power network

    model: Mi ¨ θi + Di ˙ θi = Pi − j aij sin(θi − θj ) Di ˙ θi = Pi − j aij sin(θi − θj ) (2.1) Variation of coupled oscillator model: ˙ θi = Pi − j aij sin(θi − θj ) (2.2) Add decoupled frequency dynamics: ¨ θi = − ˙ θi Homotopy: construct continuous interpolation between (1) and (2) 14 / 30
  18. Relating power networks and coupled oscillator models main result Family

    of dynamical system Hλ: d d t θ ˙ θ = (1 − λ) · (1) + λ · (2) , λ ∈ [0, 1] Theorem: Properties of the Hλ family [F. D¨ orfler & F. Bullo ’11] 1 Invariance of equilibria: For all λ ∈ [0, 1] the equilibria are θ, ˙ θ : ˙ θi = 0 , Pi = j aij sin(θi − θj ) . 2 Invariance of local stability: For all equilibria and λ ∈ [0, 1], the Jacobian has constant number of stable/unstable/zero eigenvalues. 15 / 30
  19. Relating power networks and coupled oscillator models topological equivalence interpretation

    ⇒ near the equilibrium manifolds (1) synchronizes ⇔ (2) synchronizes 22 F. D¨ orfler and F. Bullo 0.5 1 1.5 −0.5 0 0.5 θ(t) ˙ θ(t) 0.5 1 1.5 −0.5 0 0.5 θ(t) ˙ θ(t) θ(t) [rad] θ(t) [rad] ˙ θ(t) [rad/s] ˙ θ(t) [rad/s] Fig. 5.1. Phase space plot of a network of n = 4 second-order Kuramoto oscillators (1.3) with n = m (left plot) and the corresponding first-order scaled Kuramoto oscillators (5.8) together with the scaled frequency dynamics (5.9) (right plot). The natural frequencies ωi, damping terms Di, and coupling strength K are such that ωsync = 0 and K/Kcritical = 1.1. From the same initial configuration θ(0) (denoted by ￿) both first and second-order oscillators converge exponentially to the same nearby phase-locked equilibria (denoted by •) as predicted by Theorems 5.1 and 5.3. ⇒ main message: “w.l.o.g.” focus on coupled oscillator model 16 / 30
  20. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 16 / 30
  21. Synchronization in a Complete & Homogeneous Graph Classic Kuramoto model:

    [Y. Kuramoto ’75] ˙ θi = ωi − K n n j=1 sin(θi − θj ) Theorem: Explicit sync condition [F. D¨ orfler & F. Bullo ’11] The following statements are equivalent: 1 Coupling dominates heterogeneity, i.e., K > Kcritical ωmax − ωmin . 2 Kuramoto models with {ω1 , . . . , ωn } ⊆ [ωmin , ωmax] synchronize. Strictly improves existing cond’s [F. de Smet et al. ’07, N. Chopra et al. ’09, G. Schmidt et al. ’09, A. Jadbabaie et al. ’04, S.J. Chung et al. ’10, J.L. van Hemmen et al. ’93, A. Franci et al. ’10, S.Y. Ha et al. ’10, G.B. Ermentrout ’85, A. Acebron et al. ’00] 17 / 30
  22. Synchronization in a Complete & Homogeneous Graph main proof ideas

    1 Arc invariance: θ(t) in γ arc ⇔ arc-length V (θ(t)) is non-increasing V (✓(t)) ⇔ V (θ(t)) = maxi,j∈{1,...,n} |θi (t) − θj (t)| D+V (θ(t)) ≤ 0 true if K sin(γ) ≥ Kcritical ⇒ Binary synchronization condition: K > Kcritical ⇒ Bounds on transient dynamics: Kcritical /K = sin(γmin) = sin(γmax) region of attraction includes angles θ(t = 0) in γmax arc, & asymptotic cohesiveness of angles θ(t → ∞) in γmin arc 18 / 30
  23. Synchronization in a Complete & Homogeneous Graph main proof ideas

    1 Arc invariance: θ(t) in γ arc ⇔ arc-length V (θ(t)) is non-increasing V (✓(t)) ⇔ V (θ(t)) = maxi,j∈{1,...,n} |θi (t) − θj (t)| D+V (θ(t)) ≤ 0 true if K sin(γ) ≥ Kcritical 2 Frequency synchronization ⇔ linear time-varying system (consensus) d dt ˙ θi = − n j=1 aij (t) ˙ θi − ˙ θj , where aij (t) = K n cos(θi (t) − θj (t)) becomes positive in finite time 18 / 30
  24. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 18 / 30
  25. Primer on Algebraic Graph Theory Laplacian matrix L = “degree

    matrix” − “adjacency matrix” L = LT =      . . . ... . . . ... . . . −ai1 · · · n j=1 aij · · · −ain . . . ... . . . ... . . .      ≥ 0 Notions of connectivity spectral: 2nd smallest eigenvalue of L is “algebraic connectivity” λ2(L) topological: degree n j=1 aij or degree distribution Notions of heterogeneity ω E,∞ = max{i,j}∈E |ωi − ωj |, ω E,2 = {i,j}∈E |ωi − ωj |2 1/2 19 / 30
  26. Synchronization in Sparse Graphs a brief overview ˙ θi =

    ωi − n j=1 aij sin(θi − θj ) 1 necessary sync condition: n j=1 aij ≥ |ωi | ⇐ sync [C. Tavora and O.J.M. Smith ’72] 2 sufficient sync condition: λ2(L) > ω E,2 ⇒ sync [F. D¨ orfler and F. Bullo ’12] ⇒ ∃ similar conditions with diff. metrics on coupling & heterogeneity ⇒ Problem: sharpest general conditions are conservative 20 / 30
  27. A Nearly Exact Synchronization Condition main result Theorem: Sharp sync

    condition [F. D¨ orfler, M. Chertkov, & F. Bullo ’12] Under one of following assumptions: 1) extremal topologies: trees, homogeneous graphs, or {3, 4} rings 2) extremal parameters: L†ω is bipolar, small, or symmetric (for rings) 3) arbitrary one-connected combinations of 1) and 2) If L†ω E,∞ < 1 ⇒ ∃ a unique & locally exponentially stable synchronous solution θ∗ ∈ Tn satisfying |θ∗ i − θ∗ j | ≤ arcsin L†ω E,∞ for all {i, j} ∈ E . . . and result is “statistically correct” . 21 / 30
  28. A Nearly Exact Synchronization Condition statistical accuracy for power networks

    Randomized power network test cases with 50 % randomized loads and 33 % randomized generation Randomized test case Numerical worst-case Analytic prediction of Accuracy of condition: (1000 instances) angle differences: angle differences: arcsin( L†ω E,∞) max {i,j}∈E |θ∗ i − θ∗ j | arcsin( L†ω E,∞) − max {i,j}∈E |θ∗ i − θ∗ j | 9 bus system 0.12889 rad 0.12893 rad 4.1218 · 10−5 rad IEEE 14 bus system 0.16622 rad 0.16650 rad 2.7995 · 10−4 rad IEEE RTS 24 0.22309 rad 0.22480 rad 1.7089 · 10−3 rad IEEE 30 bus system 0.16430 rad 0.16456 rad 2.6140 · 10−4 rad New England 39 0.16821 rad 0.16828 rad 6.6355 · 10−5 rad IEEE 57 bus system 0.20295 rad 0.22358 rad 2.0630 · 10−2 rad IEEE RTS 96 0.24593 rad 0.24854 rad 2.6076 · 10−3 rad IEEE 118 bus system 0.23524 rad 0.23584 rad 5.9959 · 10−4 rad IEEE 300 bus system 0.43204 rad 0.43257 rad 5.2618 · 10−4 rad Polish 2383 bus system 0.25144 rad 0.25566 rad 4.2183 · 10−3 rad (winter peak 1999/2000) ⇒ similar results have been reproduced by 22 / 30
  29. A Nearly Exact Synchronization Condition comments Monte Carlo studies: for

    range of random topologies & parameters ⇒ with high prob & accuracy: sync “for almost all” G(V, E, A) & ω Possibly thin sets of degenerate counter-examples for large rings Intuition: the condition L†ω E,∞ < 1 is equivalent to eigenvectors of L      0 0 . . . . . . 0 0 1 λ2(L) 0 . . . 0 . . . ... ... ... 0 0 . . . . . . 0 1 λn(L)      eigenvectors of L T ω E,∞ < 1 ⇒ includes previous conditions on λ2(L) and degree (≈ λn(L)) 23 / 30
  30. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 23 / 30
  31. Power Flow Approximation 1 AC power flow: Pi = n

    j=1 aij sin(θi − θj ) 2 DC power flow: Pi = n j=1 aij (δi − δj ) ⇒ Conventional DC approximation: θ∗ i − θ∗ j ≈ δ∗ i − δ∗ j ⇒ Our modified DC approximation: θ∗ i − θ∗ j ≈ arcsin(δ∗ i − δ∗ j ) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 10−3 0 10 20 30 40 50 60 70 80 90 DC approximation eD C modified DC approximation eD C x 10 3 Error histograms for 1000 samples of randomized IEEE 118 system ⇒ apps: convexify OPF, planning, contingency screening, etc. 24 / 30
  32. Power Flow Approximation Security-Constrained Power Flow AC power flow with

    security constraints Pi = n j=1 aij sin(θi − θj ) , |θi − θj | < γij ∀ {i, j} ∈ E DC power flow with security constraints Pi = n j=1 aij (δi − δj ) , |δi − δj | < γij ∀ {i, j} ∈ E Novel test Pi = n j=1 aij (δi − δj ) , |δi − δj | < sin(γij ) ∀ {i, j} ∈ E Proof of equivalence for a tree: θ∗ i − θ∗ j = arcsin(δ∗ i − δ∗ j ) 25 / 30
  33. Contingency Analysis 220 309 310 120 103 209 102 102

    118 307 302 216 202 IEEE Reliability Test System ’96 at nominal operating point 26 / 30
  34. Contingency Analysis two contingencies 220 309 310 120 103 209

    102 102 118 307 302 216 202 {223, 318} {121, 325} #1: increase generation & increase loads #2: generator 323 is tripped 26 / 30
  35. Contingency Analysis predicting transition to instability ˙ ✓(t) [rad s

    1] ✓(t) [rad] ˙ ✓(t) [rad s 1] ✓(t) [rad] t  t⇤ t > t⇤ 0 0 t [s] |✓i (t) ✓j (t)| [rad] ⇤ ⇤⇤ t⇤ 0 0 Continuously increase loads: ⇒ condition arcsin( L†ω E,∞ ) < γ∗ predicts that thermal limit γ∗ of line {121, 325} is violated at 22.23 % of additional loading ⇒ line {121, 325} is tripped at 22.24% of additional loading 26 / 30
  36. Distributed Averaging PI Droop Control in Microgrids design based on

    coupled oscillator insights Microgrid modeled as network of loads and inverters Distributed & Averaging PI droop-controller (DAPI) 0 Decentralized primary control ⇒ sync: ˙ θi (t) → ωsync Distributed secondary control ⇒ frequency regulation: ωsync → 0 27 / 30
  37. Distributed Averaging PI Droop Control in Microgrids theoretic guarantees Theorem

    (Properties DAPI control) [J. Simpson-Porco, F. D¨ orfler, & F. Bullo, ’12] 1 unique & exponentially stable closed-loop sync manifold; 2 frequency regulation & optimal power sharing; 3 robustness to voltage variations, losses, & uncertainties; 4 plug’n’play & arbitrary tuning. Distributed & Averaging PI droop-controller (DAPI) 28 / 30
  38. Distributed Averaging PI Droop Control in Microgrids Practical implementation at

    Aalborg University, Denmark Implementation (together with Q. Shafiee & J.M. Guerrero) Load PC -S imulink RTW & dS PACE Control Desk Inverter 1 DC Power S upply 650 V Inverter 2 DC Power S upply 650 V io1 v1 io2 v2 iL1 iL2 LCLFilter LCLFilter Experimental results are remarkable: off-the-shelf, robust, small transients 29 / 30
  39. Distributed Averaging PI Droop Control in Microgrids Practical implementation at

    Aalborg University, Denmark Implementation (together with Q. Shafiee & J.M. Guerrero) Load PC -S imulink RTW & dS PACE Control Desk Inverter 1 DC Power S upply 650 V Inverter 2 DC Power S upply 650 V io1 v1 io2 v2 iL1 iL2 LCLFilter LCLFilter 0 2 4 6 8 10 12 14 16 18 20 49.4 49.6 49.8 50 50.2 50.4 Inverter Frequencies Time (s) Frequency (Hz) 0 2 4 6 8 10 12 14 16 18 20 300 400 500 600 700 Inverter Active Power Injections Time (s) Active Power (W) (b) (a) DAPI Controller Droop Only DAPI Controller + Load Switching Experimental results are remarkable: off-the-shelf, robust, small transients 29 / 30
  40. Outline 1 Introduction and motivation Project Samples in Complex Systems

    Control ∩ Smart Grids 2 Synchronization in power networks & coupled oscillators Relating power networks and coupled oscillator models 3 Synchronization analysis & conditions Synchronization in a complete graph Synchronization in a sparse graph 4 Applications & experiments Comp & Opt: Power Flow Approximation Monitoring: Contingency Screening Distributed Control in Microgrids 5 Conclusions 29 / 30
  41. Summary Lessons learned today: power networks are coupled oscillators sync

    if “coupling > heterogeneity” necessary, sufficient, & sharp sync cond’s theory is useful, robust & applicable Further results & applications (not shown) Related ongoing and future work: more complete theory & more detailed models from analysis to control synthesis: cont. control design, hybrid remedial action schemes, computation & optimization 30 / 30
  42. Related Publications F. D¨ orfler and F. Bullo.Synchronization in Complex

    Oscillator Networks: A Survey. In Automatica, April 2013, Note: submitted. F. D¨ orfler, M. Chertkov, and F. Bullo. Synchronization in Complex Oscillator Networks and Smart Grids. In Proceedings of the National Academy of Sciences, February 2013. F. D¨ orfler, F. Pasqualetti and F. Bullo. Continuous-Time Distributed Observers with Discrete Communication. In IEEE Journal of Selected Topics in Signal Processing, March 2013. J.W. Simpson-Porco, F. D¨ orfler, and F. Bullo. Synchronization and Power-Sharing for Droop-Controlled Inverters in Islanded Microgrids. In Automatica, Februay 2013, Note: provisionally accepted. F. D¨ orfler and F. Bullo. Kron Reduction of Graphs with Applications to Electrical Networks. In IEEE Transactions on Circuits and Systems I., January 2013. F. Pasqualetti, F. D¨ orfler, and F. Bullo. Attack Detection and Identification in Cyber-Physical Systems. In IEEE Transactions on Automatic Control, December 2012, Note: to appear. F. D¨ orfler and F. Bullo. Synchronization and Transient Stability in Power Networks and Non-uniform Kuramoto Oscillators. In SIAM Journal on Control and Optimization, June 2012. F. D¨ orfler and F. Bullo. On the Critical Coupling for Kuramoto Oscillators. In SIAM Journal on Applied Dynamical Systems, September 2011. Research supported by
  43. Acknowledgements Francesco Bullo Michael Chertkov Ian Dobson Josep Guerrero Bruce

    Francis Frank Allg¨ ower M. Jovanovic Fabio Pasqualetti J. Simpson-Porco Hedi Bouattour Diego Romeres Sandro Zampieri Ullrich M¨ unz Scott Backhaus Qobad Shafiee