Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
JobSet超入門
Search
Hiroyuki Moriya
August 22, 2023
Programming
1
800
JobSet超入門
kubernetes meetup tokyo 60の登壇資料です。
Hiroyuki Moriya
August 22, 2023
Tweet
Share
More Decks by Hiroyuki Moriya
See All by Hiroyuki Moriya
kueueに新しいPriorityClassを足した話
gekko0114
0
610
Other Decks in Programming
See All in Programming
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
150
プロジェクト新規参入者のリードタイム短縮の観点から見る、品質の高いコードとアーキテクチャを保つメリット
d_endo
1
1k
What’s New in Compose Multiplatform - A Live Tour (droidcon London 2024)
zsmb
1
350
[PyCon Korea 2024 Keynote] 커뮤니티와 파이썬, 그리고 우리
beomi
0
110
リリース8年目のサービスの1800個のERBファイルをViewComponentに移行した方法とその結果
katty0324
5
3.6k
From Subtype Polymorphism To Typeclass-based Ad hoc Polymorphism- An Example
philipschwarz
PRO
0
170
CPython 인터프리터 구조 파헤치기 - PyCon Korea 24
kennethanceyer
0
250
Vitest Browser Mode への期待 / Vitest Browser Mode
odanado
PRO
2
1.7k
のびしろを広げる巻き込まれ力:偶然を活かすキャリアの作り方/oso2024
takahashiikki
1
410
Java ジェネリクス入門 2024
nagise
0
610
色々なIaCツールを実際に触って比較してみる
iriikeita
0
270
Piniaの現状と今後
waka292
5
1.5k
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
654
59k
Into the Great Unknown - MozCon
thekraken
31
1.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
37
1.8k
What's in a price? How to price your products and services
michaelherold
243
12k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
43
6.6k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Keith and Marios Guide to Fast Websites
keithpitt
408
22k
Gamification - CAS2011
davidbonilla
80
5k
Done Done
chrislema
181
16k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Rails Girls Zürich Keynote
gr2m
93
13k
How GitHub (no longer) Works
holman
311
140k
Transcript
JobSet超入門 Hiroyuki Moriya
Self introduction ▶ GitHub: @Gekko0114 ▶ Software Engineer ▶ 趣味でk8s関連のOSSの調査
▶ 技術系のイベント初登壇です
今日話すこと ▶ kubernetes-sigs/JobSetがどんなものかを簡単に紹介します ▶ 開発途上のOSS(version 0.2.0)で日本語資料がほとんどありません ▶ 今回の内容は未実装の機能も含みます ▶ 今後の方針によって機能が変更される可能性もあります
JobSet開発の背景 ▶ k8sは、AI/ML関連のJob向けの機能開発に力を入れてこなかった ▶ PodとDeployment/StatefulSetのような存在がJobには無い ▶ AI/MLをk8s上で管理するOSSが開発されてきた (kubeflowなど) ▶ kubeflowでは、フレームワークで共通の機能が、重複実装されている
JobSetで何をしたい? ▶ 複数のJobを管理できるCRD ▶ フレームワーク間で共通の機能を、重複せずに実装したい ▶ 個別のフレームワークに必要な機能も備えたい
JobSetで何をしたい?(詳しく) ▶ 複数templateの同時実行:ML分散学習はDriverとworkerが必要 ▶ network設定:Job間のnetworkを良い感じにしたい ▶ Scaling:HPAが動作してほしい ▶ Startup sequence:ジョブの実行順序も定義したい
▶ フレームワーク(PyTorch, tensorflow etc)毎に必要な設定を管理
ジョブの実行順序の制御とは? ▶ フレームワークによって、起動したいPodの順番が決まっている ▶ 例1: RayやSparkだと、Driverを最初に起動しないといけない ▶ 例2: MPIだと、Workerを最初に起動しないといけない
フレームワーク毎に必要な設定とは? ▶ kubeflowではtraining-operator等がうまくやってくれている ▶ 例:tensorflowのTF_CONFIG, PyTorchのinit_process_group
JobSetでこれらの問題を解決しよう! ▶ kubeflowがうまくやってる点(フレームワーク毎の対応)もなんとかする
JobSetでカバーする機能 ▶ 複数templateの同時実行が可能 ▶ network設定:headless serviceが良い感じにしてくれる ▶ Scaling:HPAがちゃんと動く ▶ Startup
sequence:ジョブの実行順を定義可能予定 ▶ JobSetConfig:フレームワーク毎に設定ファイルを用意する予定 など
Yaml ▶ replicatedJobsにJob を書く
まとめ ▶ JobSetの開発が進めば、ML/AI workflowが簡易化されるかも ▶ 開発途上なのでcontribution chance ▶ コメントあればお願いします!
ご清聴ありがとうございました! ▶ 参考資料 ▶ JobSetAPI https://docs.google.com/document/d/1WqjSeFOrMneGS1wlC5cmhtHrpF2rErh-EIfkVN7rBrA/edit ▶ Repo https://github.com/kubernetes-sigs/jobset
参考:TFJob ▶ tf.distributeによる分散学習をサポート(参考) ▶ TF_CONFIG (chief, worker, ps, evaluator)の設定など
参考:PyTorchJob ▶ DataParallel, DistributedDataParallel, DistributedElastic ▶ 各分散処理向けの実装が必要 ▶ 例1: DistributedDataParallel実行のためのinit_process_group
▶ 例2: DistributedElasticのためのrendezvous