Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
JobSet超入門
Search
Hiroyuki Moriya
August 22, 2023
Programming
1
920
JobSet超入門
kubernetes meetup tokyo 60の登壇資料です。
Hiroyuki Moriya
August 22, 2023
Tweet
Share
More Decks by Hiroyuki Moriya
See All by Hiroyuki Moriya
IVRyエンジニア忘年LT大会2024 LLM監視の最前線
gekko0114
1
320
kueueに新しいPriorityClassを足した話
gekko0114
0
700
Other Decks in Programming
See All in Programming
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
130
ReadMoreTextView
fornewid
1
480
Select API from Kotlin Coroutine
jmatsu
1
190
XP, Testing and ninja testing
m_seki
3
200
GraphRAGの仕組みまるわかり
tosuri13
8
490
C++20 射影変換
faithandbrave
0
530
5つのアンチパターンから学ぶLT設計
narihara
1
120
たった 1 枚の PHP ファイルで実装する MCP サーバ / MCP Server with Vanilla PHP
okashoi
1
190
Code as Context 〜 1にコードで 2にリンタ 34がなくて 5にルール? 〜
yodakeisuke
0
110
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
1
690
PHPで始める振る舞い駆動開発(Behaviour-Driven Development)
ohmori_yusuke
2
190
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
270
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
524
40k
Balancing Empowerment & Direction
lara
1
370
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Invisible Side of Design
smashingmag
299
51k
Scaling GitHub
holman
459
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Building Applications with DynamoDB
mza
95
6.5k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
5
210
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
The Cult of Friendly URLs
andyhume
79
6.5k
Transcript
JobSet超入門 Hiroyuki Moriya
Self introduction ▶ GitHub: @Gekko0114 ▶ Software Engineer ▶ 趣味でk8s関連のOSSの調査
▶ 技術系のイベント初登壇です
今日話すこと ▶ kubernetes-sigs/JobSetがどんなものかを簡単に紹介します ▶ 開発途上のOSS(version 0.2.0)で日本語資料がほとんどありません ▶ 今回の内容は未実装の機能も含みます ▶ 今後の方針によって機能が変更される可能性もあります
JobSet開発の背景 ▶ k8sは、AI/ML関連のJob向けの機能開発に力を入れてこなかった ▶ PodとDeployment/StatefulSetのような存在がJobには無い ▶ AI/MLをk8s上で管理するOSSが開発されてきた (kubeflowなど) ▶ kubeflowでは、フレームワークで共通の機能が、重複実装されている
JobSetで何をしたい? ▶ 複数のJobを管理できるCRD ▶ フレームワーク間で共通の機能を、重複せずに実装したい ▶ 個別のフレームワークに必要な機能も備えたい
JobSetで何をしたい?(詳しく) ▶ 複数templateの同時実行:ML分散学習はDriverとworkerが必要 ▶ network設定:Job間のnetworkを良い感じにしたい ▶ Scaling:HPAが動作してほしい ▶ Startup sequence:ジョブの実行順序も定義したい
▶ フレームワーク(PyTorch, tensorflow etc)毎に必要な設定を管理
ジョブの実行順序の制御とは? ▶ フレームワークによって、起動したいPodの順番が決まっている ▶ 例1: RayやSparkだと、Driverを最初に起動しないといけない ▶ 例2: MPIだと、Workerを最初に起動しないといけない
フレームワーク毎に必要な設定とは? ▶ kubeflowではtraining-operator等がうまくやってくれている ▶ 例:tensorflowのTF_CONFIG, PyTorchのinit_process_group
JobSetでこれらの問題を解決しよう! ▶ kubeflowがうまくやってる点(フレームワーク毎の対応)もなんとかする
JobSetでカバーする機能 ▶ 複数templateの同時実行が可能 ▶ network設定:headless serviceが良い感じにしてくれる ▶ Scaling:HPAがちゃんと動く ▶ Startup
sequence:ジョブの実行順を定義可能予定 ▶ JobSetConfig:フレームワーク毎に設定ファイルを用意する予定 など
Yaml ▶ replicatedJobsにJob を書く
まとめ ▶ JobSetの開発が進めば、ML/AI workflowが簡易化されるかも ▶ 開発途上なのでcontribution chance ▶ コメントあればお願いします!
ご清聴ありがとうございました! ▶ 参考資料 ▶ JobSetAPI https://docs.google.com/document/d/1WqjSeFOrMneGS1wlC5cmhtHrpF2rErh-EIfkVN7rBrA/edit ▶ Repo https://github.com/kubernetes-sigs/jobset
参考:TFJob ▶ tf.distributeによる分散学習をサポート(参考) ▶ TF_CONFIG (chief, worker, ps, evaluator)の設定など
参考:PyTorchJob ▶ DataParallel, DistributedDataParallel, DistributedElastic ▶ 各分散処理向けの実装が必要 ▶ 例1: DistributedDataParallel実行のためのinit_process_group
▶ 例2: DistributedElasticのためのrendezvous