Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Monads you've already put in production (withou...
Search
Tejas Dinkar
October 10, 2014
Technology
1
1.2k
Monads you've already put in production (without knowing it)
Tejas Dinkar
October 10, 2014
Tweet
Share
More Decks by Tejas Dinkar
See All by Tejas Dinkar
Quick Wins for Page Speed
gja
0
130
Progressive Web Apps In Clojure(Script)
gja
4
2.4k
Lightning - Monads you already use (without knowing it)
gja
1
390
Native Extensions Served 3 Ways
gja
0
350
Other Decks in Technology
See All in Technology
「使い方教えて」「事例教えて」じゃもう遅い! Microsoft 365 Copilot を触り倒そう!
taichinakamura
0
250
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
4
450
AWS Top Engineer、浮いてませんか? / As an AWS Top Engineer, Are You Out of Place?
yuj1osm
2
200
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
11
78k
これがLambdaレス時代のChatOpsだ!実例で学ぶAmazon Q Developerカスタムアクション活用法
iwamot
PRO
5
700
from Sakichi Toyoda to Agile
kawaguti
PRO
1
110
ユーザーの声とAI検証で進める、プロダクトディスカバリー
sansantech
PRO
1
110
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
170
LLM時代にデータエンジニアの役割はどう変わるか?
ikkimiyazaki
6
1.2k
三菱電機・ソニーグループ共同の「Agile Japan企業内サテライト」_2025
sony
0
130
生成AIで「お客様の声」を ストーリーに変える 新潮流「Generative ETL」
ishikawa_satoru
1
370
関係性が駆動するアジャイル──GPTに人格を与えたら、対話を通してふりかえりを習慣化できた話
mhlyc
0
140
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
We Have a Design System, Now What?
morganepeng
53
7.8k
Balancing Empowerment & Direction
lara
4
680
Faster Mobile Websites
deanohume
310
31k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Side Projects
sachag
455
43k
Building Applications with DynamoDB
mza
96
6.7k
The Language of Interfaces
destraynor
162
25k
How STYLIGHT went responsive
nonsquared
100
5.8k
It's Worth the Effort
3n
187
28k
Transcript
Monads you are already using in prod Tejas Dinkar nilenso
about.me • Hi, I’m Tejas • Nilenso: Partner • twitter:
tdinkar • github: gja
Serious Pony
Online Abuse
Trouble at the Koolaid Point http://seriouspony.com/trouble-at-the-koolaid-point/ https://storify.com/adriarichards/telling-my-troll-story-because- kathy-sierra-left-t
If you think you understand Monads, you don't understand Monads.
None
This talk is inaccurate and will make a mathematician cry
None
Goal of this talk For you to say “Oh yeah,
I’ve used that hack”
None
Monads • Programmable Semicolons • Used to hide plumbing away
from you • You can say Monads in almost any sentence and people will think you are smart
None
Values Value
Monads Value Box
Mysore Masala Monad M onad Value
Monads Value Box
Monads • Monads define two functions • return takes a
value and puts it in a box • bind takes a box & function f, returning f(value) • it is expected that the function returns a box
Value Value Another Value Value Function return bind
Our Function Signatures Value f(value)
Some math (√4) + 5
Some math (√4) + 5 3 or 7!
Value 4
Monad [4]
[alive, dead]
ruby! x = [1, 2, 3] y = x.map {
|x| x + 1 } # y = [2, 3, 4]
return Value Value return
return def m_return(x) [x] end # m_return(4) => [4]
The functions Value f(value)
Square Root fn def sqrt(x) s = Math.sqrt(x) [s, -s]
end # sqrt(4) => [2, -2]
Increment Fn def inc_5(x) [x + 5] end # inc_5(1)
=> [6]
Bind Functions Another Value Value Function bind
Bind Function x = m_return(4) y = x.????? { |p|
sqrt(p) } # I want [-2, 2]
Bind Function x = m_return(4) y = x.map {|p| sqrt(p)
} # y => [[2, -2]] # ^—— Box in a box?
Bind Function x = m_return(4) y = x.mapcat {|p| sqrt(p)
} # y => [2, -2]
Putting it together m_return(4) .mapcat {|p| sqrt(p)} .mapcat {|p| inc_5(p)}
# => [3, 7]
You have invented the List Monad, used to model non-determinism
Congrats
Turtles all the way down
A small constraint • Let’s do a bit of a
self imposed constraint on this • Functions must return either 0 or 1 elements • (we’ll only model positive integers here)
return - stays the same
bind - stays the same x = m_return(4) y =
x.mapcat { |p| inc_5(p) } # y => 9
Square Root Fn def sqrt(x) if (x < 0) return
[] #error else [Math.sqrt(x)] end end # sqrt(4) => [2] # sqrt(-1) => []
Describe in English There is a list passed to each
step Maybe this list has just one element, or Maybe it has none
None
The Maybe Monad • The intent is to short circuit
computation • The value of the `box’ is None, or Just(Value) • You can think of it as a type-safe nil / null
try def try(x, f) if x == nil return f(x)
else return nil end end # 4.try { |x| x + 5 } => 9 # nil.try {|x| x + 5 } => nil
None
Let’s start over • The Monad Laws • Left Identity
• Right Identity • Associativity
Left Identity m_return(a).bind(f) == f(a)
Right Identity m.bind(m_return) == m
Associativity m.bind(f).bind(g) == m.bind(x -> f(x).bind(g))
Store Computation
The State Monad • Rest of the world - State
Machine (sorta) • The value inside the box f(state) => [r new-state] • Particularly useful in pure languages like Haskell • Let’s build a stack
The functions Value f(value)
The functions (f(value) state) [new-value, new-state]
push def push(val) lambda { |state| new_state = state.push(val) [value,
new_state] } end
pop def pop() lambda { |state| val = state.pop() [val,
state] } end
def double_top() lambda { |state| top = state.pop() [2 *
top, state.push(2*top)] } end double_top
return def m_return(x) lambda { |state| [x, state] } end
bind def bind(mv, f) lambda { |state| v, temp_state =
mv(state) state_fn = f(v) state_fn(temp_state) } end
example # Not working code ! m_return(4) .bind(a -> push(a))
.bind(b -> push(b + 1)) .bind(c -> double_top()) .bind(d -> sum_top2()) .bind(e -> pop())
None
Associativity m.bind(f).bind(g) == m.bind(x => f(x).bind(g))
turn this # Not working code ! m_return(4) .bind(a ->
push(a)) .bind(b -> push(b + 1)) .bind(c -> double_top()) .bind(d -> sum_top2()) .bind(e -> pop())
into this m_return(4) .bind(a -> push(a) .bind(b -> push(b +
1) .bind(c -> double_top() .bind(d -> sum_top() .bind(e -> pop())))))
done with ruby
imagine # Not working code state_monad { a <- m_return(4)
b <- push(a) c <- push(b + 1) d <- double_top() e <- sum_top2() pop() }
Back to List m_return(4) .mapcat {|p| sqrt(p)} .mapcat {|p| inc_5(p)}
# => [3, 7]
Back to List m_return(4) .mapcat {|a| sqrt(a) .mapcat {|b| inc_5(b)}}
# => [3, 7]
Back to List list_monad { a <- m_return(4) b <-
sqrt(a) c <- inc_5(b) c }
On to Clojure • this is an example from clojure.net
• the state is a vector containing every function we’ve called so far
(defn inc-s [x] (fn [state] [(inc x) (conj state :inc)]))
in clojure (defn inc-s [x] (fn [state] [(inc x) (conj
state :inc)])) (defn do-things [x] (domonad state-m [a (inc-s x) b (double-s a) c (dec-s b) d (dec-s c)] d)) ! ((do-things 7) []) => [14 [:inc :double :dec :dec]]
state monad in Clojure (defmonad state-m "Monad describing stateful computations.
The monadic values have the structure (fn [old-state] [result new-state])." [m-result (fn m-result-state [v] (fn [s] [v s])) m-bind (fn m-bind-state [mv f] (fn [s] (let [[v ss] (mv s)] ((f v) ss)))) ])
state monad in Haskell inc = state (\st -> let
st' = st +1 in (st’,st')) inc3 = do x <- inc y <- inc z <- inc return z
Finally, IO
IOMonad • rand-int(100) is non deterministic !
ay-yo
IOMonad • rand-int(100) is non deterministic • rand-int(100, seed =
42) is deterministic • monadic value: f(world) => [value, world-after-io]
IOMonad • puts() just `appends to a buffer’ in the
real world • How does gets() return different strings? • gets() returns a fixed value based on the `world’
Image Credits http://www.myfoodarama.com/2010/11/masala- dosa.html http://www.clojure.net/2012/02/10/State/ http://www.cafepress.com/ +no_place_like_home_ruby_slippers_3x5_area_rug, 796646161 http://www.netizens-stalbans.co.uk/installs-and- upgrades.html.htm
http://www.hpcorporategroup.com/what-is-the-life- box.html
Thank You MANY QUESTIONS? VERY MONAD SO FUNCTIONAL Y NO
CLOJURE?
[email protected]
@tdinkar WOW WOW WOW MUCH EASY SUPER SIMPLE