Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Monads you've already put in production (withou...
Search
Tejas Dinkar
October 10, 2014
Technology
1
1.1k
Monads you've already put in production (without knowing it)
Tejas Dinkar
October 10, 2014
Tweet
Share
More Decks by Tejas Dinkar
See All by Tejas Dinkar
Quick Wins for Page Speed
gja
0
120
Progressive Web Apps In Clojure(Script)
gja
4
2.4k
Lightning - Monads you already use (without knowing it)
gja
1
390
Native Extensions Served 3 Ways
gja
0
350
Other Decks in Technology
See All in Technology
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
300
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
0
880
mrubyと micro-ROSが繋ぐロボットの世界
kishima
2
380
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
220
OpenHands🤲にContributeしてみた
kotauchisunsun
1
500
事業成長の裏側:エンジニア組織と開発生産性の進化 / 20250703 Rinto Ikenoue
shift_evolve
PRO
1
130
開発生産性を組織全体の「生産性」へ! 部門間連携の壁を越える実践的ステップ
sudo5in5k
0
340
AI専用のリンターを作る #yumemi_patch
bengo4com
3
1.9k
Core Audio tapを使ったリアルタイム音声処理のお話
yuta0306
0
150
ビギナーであり続ける/beginning
ikuodanaka
1
200
製造業からパッケージ製品まで、あらゆる領域をカバー!生成AIを利用したテストシナリオ生成 / 20250627 Suguru Ishii
shift_evolve
PRO
1
160
解析の定理証明実践@Lean 4
dec9ue
1
200
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Scaling GitHub
holman
459
140k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
GitHub's CSS Performance
jonrohan
1031
460k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
A Tale of Four Properties
chriscoyier
160
23k
A better future with KSS
kneath
239
17k
Making Projects Easy
brettharned
116
6.3k
Designing for Performance
lara
609
69k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
Monads you are already using in prod Tejas Dinkar nilenso
about.me • Hi, I’m Tejas • Nilenso: Partner • twitter:
tdinkar • github: gja
Serious Pony
Online Abuse
Trouble at the Koolaid Point http://seriouspony.com/trouble-at-the-koolaid-point/ https://storify.com/adriarichards/telling-my-troll-story-because- kathy-sierra-left-t
If you think you understand Monads, you don't understand Monads.
None
This talk is inaccurate and will make a mathematician cry
None
Goal of this talk For you to say “Oh yeah,
I’ve used that hack”
None
Monads • Programmable Semicolons • Used to hide plumbing away
from you • You can say Monads in almost any sentence and people will think you are smart
None
Values Value
Monads Value Box
Mysore Masala Monad M onad Value
Monads Value Box
Monads • Monads define two functions • return takes a
value and puts it in a box • bind takes a box & function f, returning f(value) • it is expected that the function returns a box
Value Value Another Value Value Function return bind
Our Function Signatures Value f(value)
Some math (√4) + 5
Some math (√4) + 5 3 or 7!
Value 4
Monad [4]
[alive, dead]
ruby! x = [1, 2, 3] y = x.map {
|x| x + 1 } # y = [2, 3, 4]
return Value Value return
return def m_return(x) [x] end # m_return(4) => [4]
The functions Value f(value)
Square Root fn def sqrt(x) s = Math.sqrt(x) [s, -s]
end # sqrt(4) => [2, -2]
Increment Fn def inc_5(x) [x + 5] end # inc_5(1)
=> [6]
Bind Functions Another Value Value Function bind
Bind Function x = m_return(4) y = x.????? { |p|
sqrt(p) } # I want [-2, 2]
Bind Function x = m_return(4) y = x.map {|p| sqrt(p)
} # y => [[2, -2]] # ^—— Box in a box?
Bind Function x = m_return(4) y = x.mapcat {|p| sqrt(p)
} # y => [2, -2]
Putting it together m_return(4) .mapcat {|p| sqrt(p)} .mapcat {|p| inc_5(p)}
# => [3, 7]
You have invented the List Monad, used to model non-determinism
Congrats
Turtles all the way down
A small constraint • Let’s do a bit of a
self imposed constraint on this • Functions must return either 0 or 1 elements • (we’ll only model positive integers here)
return - stays the same
bind - stays the same x = m_return(4) y =
x.mapcat { |p| inc_5(p) } # y => 9
Square Root Fn def sqrt(x) if (x < 0) return
[] #error else [Math.sqrt(x)] end end # sqrt(4) => [2] # sqrt(-1) => []
Describe in English There is a list passed to each
step Maybe this list has just one element, or Maybe it has none
None
The Maybe Monad • The intent is to short circuit
computation • The value of the `box’ is None, or Just(Value) • You can think of it as a type-safe nil / null
try def try(x, f) if x == nil return f(x)
else return nil end end # 4.try { |x| x + 5 } => 9 # nil.try {|x| x + 5 } => nil
None
Let’s start over • The Monad Laws • Left Identity
• Right Identity • Associativity
Left Identity m_return(a).bind(f) == f(a)
Right Identity m.bind(m_return) == m
Associativity m.bind(f).bind(g) == m.bind(x -> f(x).bind(g))
Store Computation
The State Monad • Rest of the world - State
Machine (sorta) • The value inside the box f(state) => [r new-state] • Particularly useful in pure languages like Haskell • Let’s build a stack
The functions Value f(value)
The functions (f(value) state) [new-value, new-state]
push def push(val) lambda { |state| new_state = state.push(val) [value,
new_state] } end
pop def pop() lambda { |state| val = state.pop() [val,
state] } end
def double_top() lambda { |state| top = state.pop() [2 *
top, state.push(2*top)] } end double_top
return def m_return(x) lambda { |state| [x, state] } end
bind def bind(mv, f) lambda { |state| v, temp_state =
mv(state) state_fn = f(v) state_fn(temp_state) } end
example # Not working code ! m_return(4) .bind(a -> push(a))
.bind(b -> push(b + 1)) .bind(c -> double_top()) .bind(d -> sum_top2()) .bind(e -> pop())
None
Associativity m.bind(f).bind(g) == m.bind(x => f(x).bind(g))
turn this # Not working code ! m_return(4) .bind(a ->
push(a)) .bind(b -> push(b + 1)) .bind(c -> double_top()) .bind(d -> sum_top2()) .bind(e -> pop())
into this m_return(4) .bind(a -> push(a) .bind(b -> push(b +
1) .bind(c -> double_top() .bind(d -> sum_top() .bind(e -> pop())))))
done with ruby
imagine # Not working code state_monad { a <- m_return(4)
b <- push(a) c <- push(b + 1) d <- double_top() e <- sum_top2() pop() }
Back to List m_return(4) .mapcat {|p| sqrt(p)} .mapcat {|p| inc_5(p)}
# => [3, 7]
Back to List m_return(4) .mapcat {|a| sqrt(a) .mapcat {|b| inc_5(b)}}
# => [3, 7]
Back to List list_monad { a <- m_return(4) b <-
sqrt(a) c <- inc_5(b) c }
On to Clojure • this is an example from clojure.net
• the state is a vector containing every function we’ve called so far
(defn inc-s [x] (fn [state] [(inc x) (conj state :inc)]))
in clojure (defn inc-s [x] (fn [state] [(inc x) (conj
state :inc)])) (defn do-things [x] (domonad state-m [a (inc-s x) b (double-s a) c (dec-s b) d (dec-s c)] d)) ! ((do-things 7) []) => [14 [:inc :double :dec :dec]]
state monad in Clojure (defmonad state-m "Monad describing stateful computations.
The monadic values have the structure (fn [old-state] [result new-state])." [m-result (fn m-result-state [v] (fn [s] [v s])) m-bind (fn m-bind-state [mv f] (fn [s] (let [[v ss] (mv s)] ((f v) ss)))) ])
state monad in Haskell inc = state (\st -> let
st' = st +1 in (st’,st')) inc3 = do x <- inc y <- inc z <- inc return z
Finally, IO
IOMonad • rand-int(100) is non deterministic !
ay-yo
IOMonad • rand-int(100) is non deterministic • rand-int(100, seed =
42) is deterministic • monadic value: f(world) => [value, world-after-io]
IOMonad • puts() just `appends to a buffer’ in the
real world • How does gets() return different strings? • gets() returns a fixed value based on the `world’
Image Credits http://www.myfoodarama.com/2010/11/masala- dosa.html http://www.clojure.net/2012/02/10/State/ http://www.cafepress.com/ +no_place_like_home_ruby_slippers_3x5_area_rug, 796646161 http://www.netizens-stalbans.co.uk/installs-and- upgrades.html.htm
http://www.hpcorporategroup.com/what-is-the-life- box.html
Thank You MANY QUESTIONS? VERY MONAD SO FUNCTIONAL Y NO
CLOJURE?
[email protected]
@tdinkar WOW WOW WOW MUCH EASY SUPER SIMPLE