database for aesthetic visual analysis, 2012 IEEE conference on computer vision and pattern recognition, IEEE, pp. 2408–2415 (2012). pdf [2]Cortes, C. and Mohri, M.: AUC Optimization vs. Error Rate Minimization, Advances in Neural Information Processing Systems (Thrun, S., Saul, L. and Sch¨olkopf, B., eds.), Vol. 16, MIT Press (2003). pdf [3]Yang, T. and Ying, Y.: AUC maximization in the era of big data and AI: A survey, ACM computing surveys, Vol. 55, No. 8, pp. 1–37 (2022). pdf [4]Niu, Z., Zhou, M., Wang, L., Gao, X. and Hua, G.: Ordinal regression with multiple output cnn for age estimation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4920–4928 (2016). pdf [5]Cao, W., Mirjalili, V. and Raschka, S.: Rank consistent ordinal regression for neural networks with application to age estimation, Pattern Recognition Letters, Vol. 140, pp. 325–331 (2020). pdf [6]Diaz, R. and Marathe, A.: Soft labels for ordinal regression, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4738–4747 (2019). pdf [7]Sulam, J., Ben-Ari, R. and Kisilev, P.: Maximizing AUC with Deep Learning for Classification of Imbalanced Mammogram Datasets., VCBM, pp. 131–135 (2017). pdf [8]Ying, Y., Wen, L. and Lyu, S.: Stochastic online AUC maximization, Advances in neural information processing systems, Vol. 29 (2016). pdf [9]Yuan, Z., Yan, Y., Sonka, M. and Yang, T.: Large-scale robust deep auc maximization: A new surrogate loss and empirical studies on medical image classification, Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3040–3049 (2021). pdf 参考文献① 32