Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kaggle Google Quest Q&A Labeling - 23th place s...
Search
Shuhei Goda
February 28, 2020
Technology
4
4.2k
Kaggle Google Quest Q&A Labeling - 23th place solution
Shuhei Goda
February 28, 2020
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
1k
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
hakubishin3
3
1.1k
とある事業会社にとっての Kaggler の魅力
hakubishin3
9
3k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
1.1k
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
1.3k
Recommendation Industry Talks #1 Opening
hakubishin3
1
430
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
700
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
680
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
0
1.1k
Other Decks in Technology
See All in Technology
Security Diaries of an Open Source IAM
ahus1
0
130
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
580
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
250
エンジニアリングをやめたくないので問い続ける
estie
0
150
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
1.5k
Microsoft Agent 365 を 30 分でなんとなく理解する
skmkzyk
1
1k
因果AIへの招待
sshimizu2006
0
930
Reinforcement Fine-tuning 基礎〜実践まで
ch6noota
0
160
5分で知るMicrosoft Ignite
taiponrock
PRO
0
230
乗りこなせAI駆動開発の波
eltociear
1
1k
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
3
1k
RAG/Agent開発のアップデートまとめ
taka0709
0
150
Featured
See All Featured
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
RailsConf 2023
tenderlove
30
1.3k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Mobile First: as difficult as doing things right
swwweet
225
10k
BBQ
matthewcrist
89
9.9k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Designing for Performance
lara
610
69k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Transcript
©2020 Wantedly, Inc. 23th place solution Kaggle Google Quest Q&A
Labeling লձ Feb 28, 2020 - Shuhei Goda - @jy_msc
©2020 Wantedly, Inc. Team - The Hand Shuhei Goda @jy_msc
Visit Engineering Team at Wantedly Naomichi Agata @agatan_ People Engineering Team at Wantedly
©2020 Wantedly, Inc. Model Pipeline #FSUCBTF VODBTFE -JHIU(#. #FSUCBTF VODBTFE
Settings ɾ3fold with GroupKFold ɾBCE + margin ranking loss ɾ3epoch Settings ɾmax_depth=1 ɾlr=0.1 Meta features ɾtext length ɾstackexchange Text data ɾquestion_title ɾquestion_body ɾanswer 1SF1SPDFTT 2BOE" 1SF1SPDFTT POMZ2 ɾquestion_title ɾquestion_body ɾquestion_title ɾquestion_body ɾanswer Settings ɾhtml escape ɾhead+tail truncation
©2020 Wantedly, Inc. ɾHTMLจࣈྻͷΞϯΤεέʔϓ Pre-Process IUUQTXXXLBHHMFDPNDHPPHMFRVFTUDIBMMFOHFEJTDVTTJPO
©2020 Wantedly, Inc. ɾςΩετσʔλͷ݁߹ͱτϦϛϯά ɹɾ[CLS] + question_title + [SEP] +
question_body + [SEP] + answer ɾquestion_body ͱ answer ͕ࢦఆͷ͞Λ͑ͨ߹, ͔྆ΒಉαΠζΛτϦϛϯά Pre-Process IUUQTBSYJWPSHBCT
©2020 Wantedly, Inc. ɾBert-base (uncased) ɹɾޙΖ4ͭͷӅΕͷग़ྗΛ༻ https://arxiv.org/abs/1905.05583 ɹɾQAؒͷSEP tokenͷग़ྗΛ༻ Model
Architecture
©2020 Wantedly, Inc. ɾLabel weight ɹɾ؆୯ͦ͏ͳλεΫweightΛখ͘͞, ෆۉߧͰͦ͠͏ͳλεΫweightΛେ͖͘ ɹɾgpyoptͰweightͷ୳ࡧΛࢼͨ͠Έ͕ͨ, Լهͷ୯७ͳΓํ͕࠷ྑ͔ͬͨ Loss
function Label weight ͋Γ Public: 0.45979, Private: 0.41440 Label weight ͳ͠ Public: 0.43455, Private: 0.40602
©2020 Wantedly, Inc. ɾBCE + margin ranking loss (1 :
1) ɹɾϛχόονΛ2ͭʹׂͯ͠ margin ranking loss Λܭࢉ Loss function BCE + margin ranking loss Public: 0.45979, Private: 0.41440 BCE Public: 0.44006, Private: 0.40668
©2020 Wantedly, Inc. ɾQuestion Model ɹɾQ༻ͷλεΫΛQuestion text͚ͩΛͬͯղ͘ ɹɾΠϯϓοτQ͚ͩͰ͍͍ͷͰ, Qͷtruncationͷྔ͕ݮΔ (Qͷใྔ͕૿͑Δ)
Training Q model + Q and A model Public: 0.45979, Private: 0.41440 Q and A model × 2 (seed average) Public: 0.44298, Private: 0.40613
©2020 Wantedly, Inc. ɾLightGBM ɹɾmax_depth=1, lr=0.1 ɹɾmeta features ɹɹɾtext length
(question, answer) ɹɹɾmeta data from stackexchange (Score, View, FavoriteCount, …) Post-Process LightGBM Public: 0.45979, Private: 0.41440 Simple binning without meta features Public: 0.45282, Private: 0.41387
©2020 Wantedly, Inc. Why we used LightGBM? 1. Simple binning
method ɹɾ༧ଌΛࢄԽ͢Δ͜ͱͰ Spearman’s correlation ͕ྑ͘ͳΔ͜ͱʹؾͮ͘ ɹɾtarget͝ͱʹϏϯαΠζΛࣄલʹઃఆͯ͠Ϗϯೋϯά ɹɾϏϯαΠζݻఆʹ্ͨ͠ͰBertͷ֤epochͷग़ྗΛweighted average (weight࠷దԽ)
©2020 Wantedly, Inc. Why we used LightGBM? 2. Optimize bin-size
and weights ɹɾϏϯαΠζ࠷దͳΛ͍ͨ͘ͳͬͨ ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ্͕ͨ͠ख͍͔͘ͳ͍ ɹɾ࠷దͳϏϯαΠζ༧ଌͷܗʹΑܾͬͯ·Δ. ֤foldͷ࠷దͳϏϯαΠζͷฏۉͱ weighted averageޙͷ༧ଌ࠷దͳͷ͔Βဃ͢Δ
©2020 Wantedly, Inc. Why we used LightGBM? 3. LightGBM ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ͍ͨ͠
ɹɾmeta features͍͍ͨ ɹɾGBDTσʔλΛׂׂͯ͠ޙͷྖҬʹ࠷దͳΛׂΓͯΔख๏ ɹɹˠ ઙ͍߹Ϗϯχϯάͱಉ༷ͷࢄԽ͕Ͱ͖ΔΜ͡Όͳ͍͔ max_depth=2 max_depth=8
©2020 Wantedly, Inc. 4. LightGBM (parameter tuning) ɹɾࢄԽ͢Δ΄Ͳscore͕ྑ͘ͳΔͷͰ, ߏΛۃྗγϯϓϧʹ͍ͨ͠ ɹɾtrainσʔλΛׂͯ͠࠷దͳύϥϝʔλΛݟ͚ͭΔ
ɹɾmax_depthΛҰ൪খ͘͞, lrΛۃྗେ͖ͨ͘͠ํ͕score͕ྑ͘ͳͬͨ Why we used LightGBM?
©2020 Wantedly, Inc. ɾsample weightͷઃఆ ɾhostͷ୯ޠΛΠϯϓοτͷઌ಄ྻʹஔ͘ ɾnew tokenͷՃ ɾBert-base casedΛ͏
ɾtexͷίʔυϒϩοΫΛྗٕͰফڈ Didn’t work for us
©2020 Wantedly, Inc. Discussion: https://www.kaggle.com/c/google-quest-challenge/discussion/129904#742302 Kernel: https://www.kaggle.com/shuheigoda/23th-place-solusion Links
©2020 Wantedly, Inc. https://www.wantedly.com/projects/375150 We are hiring !