Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Kaggle Google Quest Q&A Labeling - 23th place s...
Search
Shuhei Goda
February 28, 2020
Technology
4
4.1k
Kaggle Google Quest Q&A Labeling - 23th place solution
Shuhei Goda
February 28, 2020
Tweet
Share
More Decks by Shuhei Goda
See All by Shuhei Goda
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
950
ジョブマッチングサービスにおける相互推薦システムの応用事例と課題
hakubishin3
3
980
とある事業会社にとっての Kaggler の魅力
hakubishin3
8
2.8k
課題の解像度が荒かったことで意図した改善ができなかった話
hakubishin3
3
1k
Wantedly におけるマッチング体験を最大化させるための推薦システム
hakubishin3
4
1.2k
Recommendation Industry Talks #1 Opening
hakubishin3
1
410
会社訪問アプリ「Wantedly Visit」での シゴトに関する興味選択機能と推薦改善
hakubishin3
0
660
論文紹介: Improving Implicit Feedback-Based Recommendation through Multi-Behavior Alignment(Xin Xin et al., 2023)
hakubishin3
0
660
Feedback Prize - English Language Learning における擬似ラベルの品質向上の取り組み
hakubishin3
0
1.1k
Other Decks in Technology
See All in Technology
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
9.5k
研究開発と製品開発、両利きのロボティクス
youtalk
1
500
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
190
Obsidian応用活用術
onikun94
1
430
Kiroと学ぶコンテキストエンジニアリング
oikon48
6
9.6k
dbt開発 with Claude Codeのためのガードレール設計
10xinc
1
830
機械学習を扱うプラットフォーム開発と運用事例
lycorptech_jp
PRO
0
210
2025年夏 コーディングエージェントを統べる者
nwiizo
0
120
Agile PBL at New Grads Trainings
kawaguti
PRO
1
340
落ちる 落ちるよ サーバーは落ちる
suehiromasatoshi
0
150
AI時代に非連続な成長を実現するエンジニアリング戦略
sansantech
PRO
3
1.1k
「何となくテストする」を卒業するためにプロダクトが動く仕組みを理解しよう
kawabeaver
0
270
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
GraphQLとの向き合い方2022年版
quramy
49
14k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Facilitating Awesome Meetings
lara
55
6.5k
Mobile First: as difficult as doing things right
swwweet
224
9.9k
Designing for Performance
lara
610
69k
Transcript
©2020 Wantedly, Inc. 23th place solution Kaggle Google Quest Q&A
Labeling লձ Feb 28, 2020 - Shuhei Goda - @jy_msc
©2020 Wantedly, Inc. Team - The Hand Shuhei Goda @jy_msc
Visit Engineering Team at Wantedly Naomichi Agata @agatan_ People Engineering Team at Wantedly
©2020 Wantedly, Inc. Model Pipeline #FSUCBTF VODBTFE -JHIU(#. #FSUCBTF VODBTFE
Settings ɾ3fold with GroupKFold ɾBCE + margin ranking loss ɾ3epoch Settings ɾmax_depth=1 ɾlr=0.1 Meta features ɾtext length ɾstackexchange Text data ɾquestion_title ɾquestion_body ɾanswer 1SF1SPDFTT 2BOE" 1SF1SPDFTT POMZ2 ɾquestion_title ɾquestion_body ɾquestion_title ɾquestion_body ɾanswer Settings ɾhtml escape ɾhead+tail truncation
©2020 Wantedly, Inc. ɾHTMLจࣈྻͷΞϯΤεέʔϓ Pre-Process IUUQTXXXLBHHMFDPNDHPPHMFRVFTUDIBMMFOHFEJTDVTTJPO
©2020 Wantedly, Inc. ɾςΩετσʔλͷ݁߹ͱτϦϛϯά ɹɾ[CLS] + question_title + [SEP] +
question_body + [SEP] + answer ɾquestion_body ͱ answer ͕ࢦఆͷ͞Λ͑ͨ߹, ͔྆ΒಉαΠζΛτϦϛϯά Pre-Process IUUQTBSYJWPSHBCT
©2020 Wantedly, Inc. ɾBert-base (uncased) ɹɾޙΖ4ͭͷӅΕͷग़ྗΛ༻ https://arxiv.org/abs/1905.05583 ɹɾQAؒͷSEP tokenͷग़ྗΛ༻ Model
Architecture
©2020 Wantedly, Inc. ɾLabel weight ɹɾ؆୯ͦ͏ͳλεΫweightΛখ͘͞, ෆۉߧͰͦ͠͏ͳλεΫweightΛେ͖͘ ɹɾgpyoptͰweightͷ୳ࡧΛࢼͨ͠Έ͕ͨ, Լهͷ୯७ͳΓํ͕࠷ྑ͔ͬͨ Loss
function Label weight ͋Γ Public: 0.45979, Private: 0.41440 Label weight ͳ͠ Public: 0.43455, Private: 0.40602
©2020 Wantedly, Inc. ɾBCE + margin ranking loss (1 :
1) ɹɾϛχόονΛ2ͭʹׂͯ͠ margin ranking loss Λܭࢉ Loss function BCE + margin ranking loss Public: 0.45979, Private: 0.41440 BCE Public: 0.44006, Private: 0.40668
©2020 Wantedly, Inc. ɾQuestion Model ɹɾQ༻ͷλεΫΛQuestion text͚ͩΛͬͯղ͘ ɹɾΠϯϓοτQ͚ͩͰ͍͍ͷͰ, Qͷtruncationͷྔ͕ݮΔ (Qͷใྔ͕૿͑Δ)
Training Q model + Q and A model Public: 0.45979, Private: 0.41440 Q and A model × 2 (seed average) Public: 0.44298, Private: 0.40613
©2020 Wantedly, Inc. ɾLightGBM ɹɾmax_depth=1, lr=0.1 ɹɾmeta features ɹɹɾtext length
(question, answer) ɹɹɾmeta data from stackexchange (Score, View, FavoriteCount, …) Post-Process LightGBM Public: 0.45979, Private: 0.41440 Simple binning without meta features Public: 0.45282, Private: 0.41387
©2020 Wantedly, Inc. Why we used LightGBM? 1. Simple binning
method ɹɾ༧ଌΛࢄԽ͢Δ͜ͱͰ Spearman’s correlation ͕ྑ͘ͳΔ͜ͱʹؾͮ͘ ɹɾtarget͝ͱʹϏϯαΠζΛࣄલʹઃఆͯ͠Ϗϯೋϯά ɹɾϏϯαΠζݻఆʹ্ͨ͠ͰBertͷ֤epochͷग़ྗΛweighted average (weight࠷దԽ)
©2020 Wantedly, Inc. Why we used LightGBM? 2. Optimize bin-size
and weights ɹɾϏϯαΠζ࠷దͳΛ͍ͨ͘ͳͬͨ ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ্͕ͨ͠ख͍͔͘ͳ͍ ɹɾ࠷దͳϏϯαΠζ༧ଌͷܗʹΑܾͬͯ·Δ. ֤foldͷ࠷దͳϏϯαΠζͷฏۉͱ weighted averageޙͷ༧ଌ࠷దͳͷ͔Βဃ͢Δ
©2020 Wantedly, Inc. Why we used LightGBM? 3. LightGBM ɹɾϏϯαΠζͱweightsͷಉ࣌࠷దԽ͍ͨ͠
ɹɾmeta features͍͍ͨ ɹɾGBDTσʔλΛׂׂͯ͠ޙͷྖҬʹ࠷దͳΛׂΓͯΔख๏ ɹɹˠ ઙ͍߹Ϗϯχϯάͱಉ༷ͷࢄԽ͕Ͱ͖ΔΜ͡Όͳ͍͔ max_depth=2 max_depth=8
©2020 Wantedly, Inc. 4. LightGBM (parameter tuning) ɹɾࢄԽ͢Δ΄Ͳscore͕ྑ͘ͳΔͷͰ, ߏΛۃྗγϯϓϧʹ͍ͨ͠ ɹɾtrainσʔλΛׂͯ͠࠷దͳύϥϝʔλΛݟ͚ͭΔ
ɹɾmax_depthΛҰ൪খ͘͞, lrΛۃྗେ͖ͨ͘͠ํ͕score͕ྑ͘ͳͬͨ Why we used LightGBM?
©2020 Wantedly, Inc. ɾsample weightͷઃఆ ɾhostͷ୯ޠΛΠϯϓοτͷઌ಄ྻʹஔ͘ ɾnew tokenͷՃ ɾBert-base casedΛ͏
ɾtexͷίʔυϒϩοΫΛྗٕͰফڈ Didn’t work for us
©2020 Wantedly, Inc. Discussion: https://www.kaggle.com/c/google-quest-challenge/discussion/129904#742302 Kernel: https://www.kaggle.com/shuheigoda/23th-place-solusion Links
©2020 Wantedly, Inc. https://www.wantedly.com/projects/375150 We are hiring !