Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms for Gerrymandering over Graphs
Search
hanachiru
July 27, 2020
Education
0
210
Algorithms for Gerrymandering over Graphs
hanachiru
July 27, 2020
Tweet
Share
More Decks by hanachiru
See All by hanachiru
1時間でフラグメントシェーダー入門からボロノイ図まで
hanachiru
0
1.7k
Other Decks in Education
See All in Education
高校におけるプログラミング教育を考える
naokikato
PRO
0
160
大学院進学について(2025年度版)
imash
0
130
日本の情報系社会人院生のリアル -JAIST 修士編-
yurikomium
1
130
CHARMS-HP-Banner
weltraumreisende
0
1k
ÉTICA, INCLUSIÓN, EDUCACIÓN INTEGRAL Y NEURODERECHOS EN EL CONTEXTO DEL NEUROMANAGEMENT
jvpcubias
0
120
Ch1_-_Partie_1.pdf
bernhardsvt
0
400
今の私を形作る4つの要素と偶然の出会い(セレンディピティ)
mamohacy
2
100
Transición del Management al Neuromanagement
jvpcubias
0
240
核燃料政策を問う─英国の決断と日本
hide2kano
0
200
GitHubとAzureを使って開発者になろう
ymd65536
1
170
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
320
H5P-työkalut
matleenalaakso
4
40k
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
The Language of Interfaces
destraynor
162
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Git: the NoSQL Database
bkeepers
PRO
431
66k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
We Have a Design System, Now What?
morganepeng
53
7.8k
Designing for Performance
lara
610
69k
Bash Introduction
62gerente
615
210k
Visualization
eitanlees
148
16k
GraphQLとの向き合い方2022年版
quramy
49
14k
Transcript
グラフ上のGerrymanderingのための アルゴリズム Algorithms for Gerrymandering over Graphs Takehiro Ito, Naoyuki
Kamiyama, Yusuke Kobayashi, Yoshio Okamoto, Ph.D. 名無しの権兵衛 1
ストーリー 2 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 1. 有権者を区分けする 2. それぞれの選挙区から候補者を一人を選びだす 3. 勝利した選挙区が最も多い候補者が最終的に当選する
候補者qが当選 青×3, 赤×0 → 青 青×2, 赤×1 → 青 青×4, 赤×2 → 青 青×3, 赤×0 → 青
ストーリー 3 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 候補者qが当選 どうしても候補者pを勝たせたい! あなた
ストーリー 4 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤
ストーリー 5 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤 目的 :ゲリマンダリングが可能か判定するアルゴリズムを 多項式時間で解けるかという観点から調べる
ゲリマンダリング 6 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 7 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q=0, p=1 → {p} q = 1+2+3 = 6, p=0 → {q} q=5, p=6 → {p} 出力:q×1, p×2 => YES 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 8 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 9 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 10 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q = 1+ 5 = 6, p=6 →{p, q} q=2, p=0 → {q} q=3, p=0 → {q} q=0, p=1 → {p} 例. 候補者 = {p, q}, 目的候補者p, 分割数=4 出力:q×3, p×1 => NO タイブレイクを考慮すると目的候補は単独,それ 以外の候補は含むことでカウントする
本論文の結果 11 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ?
本論文の結果 12 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
NP完全性 13 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である e.g. 完全二部グラフ 完全グラフ
NP完全性 14 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
Partition問題 15 Partition問題 入力:n個の自然数の集合 a1 ,a2 , … , an
出力: となるようなS∈{1,2,...,n}があればYES,なければNO (例1) 入力 : n = 4, a1 =1, a2 =3, a3 =1, a4 =1 出力: YES (例2) 入力 : n = 4, a1 =1, a2 =3, a3 =5, a4 =11 出力: NO S = {1, 3, 4}のとき a1 + a3 + a4 =1 + 1 + 1 = 3 a2 = 3 条件を満たす Sは存在しない
インスタンスの変換 16 Partition問題 入力 : n = 4, a1 =1, a2
=3, a3 =1, a4 =1 出力: YES Gerrymandering問題 入力 : 無向グラフ,分割数k=2,候補者数|C|=2 出力 : ? p p 1 q 3 q 1 q 1 q 3.3 3.3 pを選ぶ重み0.5(a1 +a2 +...+an )+εの頂点を2個 => 0.5(1+3+1+1)+0.3 qを選ぶ a1 , a2 , ..., an に対応した頂点を用意
定理1の証明のポイント 17 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換
定理1の証明のポイント 18 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ pが0個, qが2個となり 実行可能解はない
定理1の証明のポイント 19 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ pが1個, qが1個となり 実行可能解はない
定理1の証明のポイント 20 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦ pが2個, qが0個となり 実行可能解があり
定理1の証明のポイント 21 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 目的候補pを選ぶ点は二つしかないので, 各区間に1つずつ分ける すると,2つの区間がおのずと導ける 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦
NP完全性 22 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
本論文の結果 23 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
まとめ ・ゲリマンダリング 問題の定義 ・グラフ上でのGerrymandering問題の困難性の証明 ・Gerrymandering問題の多項式時間アルゴリズム構築 24