Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Algorithms for Gerrymandering over Graphs
Search
hanachiru
July 27, 2020
Education
0
190
Algorithms for Gerrymandering over Graphs
hanachiru
July 27, 2020
Tweet
Share
More Decks by hanachiru
See All by hanachiru
1時間でフラグメントシェーダー入門からボロノイ図まで
hanachiru
0
1.6k
Other Decks in Education
See All in Education
教員向け生成AI基礎講座(2025年3月28日 東京大学メタバース工学部 ジュニア講座)
luiyoshida
0
160
SkimaTalk Tutorial for Corporate Customers
skimatalk
0
240
アジャイルやっていきを醸成する内製講座
nomuson
1
380
探究的な学び:Monaca Educationで学ぶプログラミングとちょっとした課題解決
asial_edu
0
260
R6愛南町事前復興フォーラムリーフレット
bousaichiribu
0
160
Are puppies a ranking factor?
jonoalderson
0
160
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
4
15k
SkimaTalk Teacher Guidelines
skimatalk
0
720k
1216
cbtlibrary
0
290
Info Session MSc Computer Science & MSc Applied Informatics
signer
PRO
0
130
SkimaTalk Tutorial for Students
skimatalk
0
1.5k
Power Automate+ChatGPTを使ってエンジニア教育を改善してみた #RPALT
masakiokuda
0
160
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.6k
Automating Front-end Workflow
addyosmani
1369
200k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7.1k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
A better future with KSS
kneath
238
17k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
30k
Reflections from 52 weeks, 52 projects
jeffersonlam
349
20k
Embracing the Ebb and Flow
colly
85
4.6k
Transcript
グラフ上のGerrymanderingのための アルゴリズム Algorithms for Gerrymandering over Graphs Takehiro Ito, Naoyuki
Kamiyama, Yusuke Kobayashi, Yoshio Okamoto, Ph.D. 名無しの権兵衛 1
ストーリー 2 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 1. 有権者を区分けする 2. それぞれの選挙区から候補者を一人を選びだす 3. 勝利した選挙区が最も多い候補者が最終的に当選する
候補者qが当選 青×3, 赤×0 → 青 青×2, 赤×1 → 青 青×4, 赤×2 → 青 青×3, 赤×0 → 青
ストーリー 3 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 とある選挙にて・・・ 候補者qが当選 どうしても候補者pを勝たせたい! あなた
ストーリー 4 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤
ストーリー 5 候補者pを支持する有権者 候補者qを支持する有権者 青×9, 赤×3 選挙にて・・・ 候補者pが当選 区分けをうまく割り当てれば候補者pを当選させられるのでは? あなた
恣意的に区分けを行う:ゲリマンダリング 青×9, 赤×0 → 青 青×0, 赤×2 → 赤 青×0, 赤×1 → 赤 青×1, 赤×2 → 赤 目的 :ゲリマンダリングが可能か判定するアルゴリズムを 多項式時間で解けるかという観点から調べる
ゲリマンダリング 6 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 7 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q=0, p=1 → {p} q = 1+2+3 = 6, p=0 → {q} q=5, p=6 → {p} 出力:q×1, p×2 => YES 例. 候補者 = {p, q}, 目的候補者p, 分割数=3
ゲリマンダリング 8 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 9 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p 例. 候補者 = {p, q}, 目的候補者p, 分割数=4
ゲリマンダリング 10 1 2 5 3 6 1 Gerrymandering問題 ・入力
・無向グラフ ・重み(有権者の数) ・候補者の集合 ・目的の候補者 ・分割数 ・出力 ・目的の候補者が単独で勝利する 連結成分に分割できればYES, なければNO q q q q p p q = 1+ 5 = 6, p=6 →{p, q} q=2, p=0 → {q} q=3, p=0 → {q} q=0, p=1 → {p} 例. 候補者 = {p, q}, 目的候補者p, 分割数=4 出力:q×3, p×1 => NO タイブレイクを考慮すると目的候補は単独,それ 以外の候補は含むことでカウントする
本論文の結果 11 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ?
本論文の結果 12 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
NP完全性 13 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である e.g. 完全二部グラフ 完全グラフ
NP完全性 14 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
Partition問題 15 Partition問題 入力:n個の自然数の集合 a1 ,a2 , … , an
出力: となるようなS∈{1,2,...,n}があればYES,なければNO (例1) 入力 : n = 4, a1 =1, a2 =3, a3 =1, a4 =1 出力: YES (例2) 入力 : n = 4, a1 =1, a2 =3, a3 =5, a4 =11 出力: NO S = {1, 3, 4}のとき a1 + a3 + a4 =1 + 1 + 1 = 3 a2 = 3 条件を満たす Sは存在しない
インスタンスの変換 16 Partition問題 入力 : n = 4, a1 =1, a2
=3, a3 =1, a4 =1 出力: YES Gerrymandering問題 入力 : 無向グラフ,分割数k=2,候補者数|C|=2 出力 : ? p p 1 q 3 q 1 q 1 q 3.3 3.3 pを選ぶ重み0.5(a1 +a2 +...+an )+εの頂点を2個 => 0.5(1+3+1+1)+0.3 qを選ぶ a1 , a2 , ..., an に対応した頂点を用意
定理1の証明のポイント 17 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換
定理1の証明のポイント 18 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ pが0個, qが2個となり 実行可能解はない
定理1の証明のポイント 19 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ pが1個, qが1個となり 実行可能解はない
定理1の証明のポイント 20 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦ pが2個, qが0個となり 実行可能解があり
定理1の証明のポイント 21 p p 1 q 3 q 1 q
1 q 2つの区間に分割を行うときの分割方法 必ず目的候補pを勝たせなければいけない 目的候補pを選ぶ点は二つしかないので, 各区間に1つずつ分ける すると,2つの区間がおのずと導ける 3.3 3.3 Partition問題のインスタンス a1 =1, a2 =3, a3 =1, a4 =1 を変換 pが勝つべき区間 0個 => ✖ 1個 => ✖ 2個 => ◦
NP完全性 22 定理1 Gerrymandering問題は分割数k=2,候補者数|C|=2, Gが完全二部グラフもしくは完全グラフのときNP完全である NP完全である Partition問題 Gerrymandering問題 証明. 既にNP完全性が知られているPartition問題から,
Gerrymandering問題に多項式時間帰着する
本論文の結果 23 候補者数|C| : 一般 候補者数|C| : 定数 平面 木
スター パス 強NP完全(定理3) 直径4 強NP完全 NP完全(定理1) 分割数k=2, |C| = 4 多項式時間(定理5) 多項式時間 擬多項式時間(定理7) 多項式時間(定理6) ? ココ
まとめ ・ゲリマンダリング 問題の定義 ・グラフ上でのGerrymandering問題の困難性の証明 ・Gerrymandering問題の多項式時間アルゴリズム構築 24