Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
不動産webサービスを強くする機械学習の使い方
Search
hiddy
July 29, 2016
Technology
3
1.1k
不動産webサービスを強くする機械学習の使い方
2016/07/28(木) 19:30〜
【不動産テック勉強会#1】人工知能時代に備えて不動産関連データについて色々語らう勉強会
※画像や物件名などについてはマスクしております。ご了承下さい。
hiddy
July 29, 2016
Tweet
Share
Other Decks in Technology
See All in Technology
7,000名規模の 人材サービス企業における プロダクト戦略・戦術と課題 / Product strategy, tactics and challenges for a 7,000-employee staffing company
techtekt
0
260
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
1
160
AIエージェント開発における「攻めの品質改善」と「守りの品質保証」 / 2024.04.09 GPU UNITE 新年会 2025
smiyawaki0820
0
400
Vision Pro X Text to 3D Model ~How Swift and Generative Al Unlock a New Era of Spatial Computing~
igaryo0506
0
260
クォータ監視、AWS Organizations環境でも楽勝です✌️
iwamot
PRO
1
240
システムとの会話から生まれる先手のDevOps
kakehashi
PRO
0
210
【2025年度新卒技術研修】100分で学ぶ サイバーエージェントのデータベース 活用事例とMySQLパフォーマンス調査
cyberagentdevelopers
PRO
4
6.5k
Cursor AgentによるパーソナルAIアシスタント育成入門―業務のプロンプト化・MCPの活用
os1ma
9
3.1k
テキスト解析で見る PyCon APAC 2025 セッション&スピーカートレンド分析
negi111111
0
280
近年の PyCon 情勢から見た PyCon APAC のまとめ
terapyon
0
290
.mdc駆動ナレッジマネジメント/.mdc-driven knowledge management
yodakeisuke
24
11k
Micro Frontends: Necessity, Implementation, and Challenges
rainerhahnekamp
2
350
Featured
See All Featured
Code Review Best Practice
trishagee
67
18k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Scaling GitHub
holman
459
140k
How to train your dragon (web standard)
notwaldorf
91
6k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Typedesign – Prime Four
hannesfritz
41
2.6k
Agile that works and the tools we love
rasmusluckow
328
21k
Being A Developer After 40
akosma
91
590k
Code Reviewing Like a Champion
maltzj
522
39k
Docker and Python
trallard
44
3.3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
Transcript
ෆಈ࢈XFCαʔϏεΛڧ͘͢Δ ػցֶशͷ͍ํ ෆಈ࢈ςοΫษڧձ 5XJUUFS!IJEEZZ
͓ଋ ͜ͷ-5εϐʔΧʔݸਓͷ ݟղͰ͋Γɺॴଐ͢ΔاۀஂମΛද͢Δ ͷͰ͋Γ·ͤΜɻ Disclaimer This LT expresses the viewpoints
of ME and is not reviewed for correctness or accuracy by my company.
୭ʁ
*%!IJEEZZ ৬ۀɿ1.ʢϓϩμΫτͷ΄͏ʣ ͓ࣄɿΨνίʔσΟϯάҎ֎ ಛٕɿXFCαʔϏεͮ͘Γ ɹͦΕඞཁʁͱݴ͍์ͭ ݴޠɿ3MFWFMͪΐͬ͜ͱSVCZSBJMT ઐ߈ɿܭྔܦࡁֶʢ541ʣ
͜Ε·Ͱ࡞ͬͨܞΘͬͨαʔϏε ohmy!Ո
ି݅ใαΠτΛ͍ͬͯ·͢
σʔλੳɺϏδϡΞϥΠθʔγϣϯʹΑΓɺ Ϣʔβʔ͕݅બͼΛ͘͢͢͠Δ
ࠓ-3ିͰͷ ػցֶशͷ ͍ํΛ ͝հ͍ͨ͠
ڪΔ͖͕݅ଘࡏ͢Δ
None
None
None
None
͜ͷΜΘ͔Γ͍͢
͜ͷΜΘ͔Γ͍͢ ೖྗϛε
None
͜ΕϗϯϞϊ
None
͜ΕχηϞϊ
ՈؒऔΓɺ͞ͳͲͱ ͍Ζ͍Ζؔ࿈͍ͯ͠Δ
ՈؒऔΓɺ͞ͳͲͱ ͍Ζ͍Ζؔ࿈͍ͯ͠Δ ͘͡ͷ͕ΊΜͲ͍͘͞
ՈؒऔΓɺ͞ͳͲͱ ͍Ζ͍Ζؔ࿈͍ͯ͠Δ ͘͡ͷ͕ΊΜͲ͍͘͞ Ϟσϧͱ͔ߟ͑ͨ͘ͳ͍
0OFDMBTT47. TWN͞Μ͕దʹ֎Εఆͯ͘͠ΕΔ ڭࢣσʔλΛ༻ҙ͠ͳͯ͘ΠΠ Βͪ͘Μ
One-class svm library(kernlab) # make data to one-class svm model
DF <- data.frame(DF, class=1) outlier.svm <- ksvm(x=class ~bukken_shubetsu +struct +struct_all +madori +history_TOTAL +log_price_with_kanrihi, data=DF, type="one-svc",C=1000,scaled=TRUE,nu=0.01, kernel="rbfdot") #judge outlier DF$outlier <- predict(outlier.svm, DF, type = "response") ݅छผ ݐஙλΠϓ ઐ༗໘ੵ ؒऔΓ ங ཧඅࠐΈՈʢରԽʣ
None
None
Կߟ͑ͣ ߦ͘Β͍Ͱ ֎Ε͚ͨ͡ʂ 0 ʾ˜ʽ 0ƂŖŘ̇
ʢతʣ ೖྗϛεσʔλͷݮ ʢख๏ʣ "OPNBMZ%FUFDUJPO ʢํ๏ʣ 0OFDMBTT47.
͞ΒͳΔ
None
࢛ɺ෩࿊ແɺτΠϨڞಉɺτΩϫͷΑ͏ͳ݅
χʔζ ͋Δ͔͠Εͳ͍
χʔζ ͋Δ͔͠Εͳ͍ ʢ͕ͩʣ
͋·Γʹଟ͘ ϦετϖʔδʹͰΔͱ ݟ͕ͨѱ͍ɻɻ
ΑΖ͍͠ɺ ͳΒɺ ఆثΛͭ͘Ζ͏
ಛघ݅ΛਓྗͰ݅ఔऩू ਓྗͰݟʂ ʢϋʔτΛڧͭ͘͜ͱʣ ˞݅ࣗମѱ͋͘Γ·ͤΜ
ಛघ݅ΛਓྗͰ݅ఔऩू ಛघ݅Ͱͳ͍ͷΛ݅நग़ ͜͜Կߟ͑ͳͯ͘ΠΠ
Boro detection svm library(kernlab) boro.svm <- ksvm( boro~bukken_shubetsu +struct +struct_all
+madori_num +madori_type_num +history_TOTAL +log_price_with_kanrihi, data=DF, C=1.584893, scaled=TRUE,nu=0.01, kernel="rbfdot",kpar=list(sigma=10),cross=13) ಛघ݅ΛਓྗͰ݅ఔऩू ಛघ݅Ͱͳ͍ͷΛ݅நग़ 47.ʹͯɺʮಛघ݅ఆثʯΛੜ ݅छผ ݐஙλΠϓ ઐ༗໘ੵ ؒऔΓ ؒऔΓλΠϓ ཧඅࠐΈՈʢରԽʣ ங http://d.hatena.ne.jp/sleepy_yoshi/20120624/p1 Λνϡʔχϯάͷࢀߟʹ͠·ͨ͠
None
ಛघͳ͕݅ Ϧετ্Ґʹग़ͳͬͨ͘ʂ 0 ʾ˜ʽ 0ƂŖŘ̇
ʢతʣ Ϧετϖʔδͷ69վળ ʢख๏ʣ ̎ྨث ʢํ๏ʣ 47.
ࣈ͍͋͛ͨͰ͢ ઌੜɻ
$73͕͋Βͳ͍͔ͳʔ ʢ͕͋Βͳ͍ʣ
ͦ͏͔ɺ $7ʢ߹ͤʣ͞ΕΔ ͨ ݅ʹͳʹ͔ಛ͕͋Δ ͷͰʁ
8FCϚʔέతΞϓϩʔνͩͱɺ ϢʔβʔηάϝϯτΛ͖Γɺ ରԠ͢Δ݅Λஸೡʹਫ਼ߴ͘ Ϩίϝϯυ͢Δͱ͜Ζ͕ͩɺɺɺ
ࡶʹ σʔλυϦϒϯͰ $73վળ͍ͤͨ͞
σʔλαΠΤϯςΟετϨϕϧද IUUQEIBUFOBOFKQTIBLF[P
Ϩϕϧ ϨϕϧͷਓୡूܭੳʹՃ͑ͯɺ࠷ݶͷػցֶश ౷ܭֶͷख๏Λ͍ͬͯ·͢ɻ47.ϥϯμϜϑΥϨ ετͳͲͷϝδϟʔͳख๏Λ֮͑ɺσʔλੳ͕໘ന͘ ͳͬͯ͘ΔࠒͰ͢ɻ͔͠͠ͳ͕Β34144ͳͲͷઐ༻ ιϑτΛৗʹσϑΥϧτઃఆͷύϥϝʔλͰੳ͍ͯ͠ ͨΓɺಛྔબલॲཧͷॏཁੑΛ͘ݟΔ͕͋ Γ·͢ɻ ͍ۙ͏ͪʹݱ࣮ͷσʔλJSJTͷΑ͏ʹ͘ͳ͍͜ͱΛ Δ͜ͱʹͳΔͰ͠ΐ͏ɻ
͋Γ͕ͪͳൃݴ ʮϥϯμϜϑΥϨετ࠷ڧʯ
͋Γ͕ͪͳൃݴ ʮϥϯμϜϑΥϨετ࠷ڧʯ
͋Γ͕ͪͳൃݴ ʮϥϯμϜϑΥϨετ࠷ڧʯ
ϥϯμϜϑΥϨετͰ $7͞Ε͍݅͢Λ༧ଌ
ϥϯμϜϑΥϨετͰ $7͞Ε͍݅͢Λ༧ଌ http://nakhirot.hatenablog.com/entry/20130704/1372874761 ΑΓൈਮ
ϥϯμϜϑΥϨετͰ $7͞Ε͍݅͢Λ༧ଌ CVͨ͠ ݅σʔλ CV͠ͳ͔ͬͨ ݅σʔλ 3BEPN 'PSFTU ʢύλʔϯೝࣝʣ ࠓͷ
݅σʔλ $7ͦ͠͏ͳ ݅σʔλʂ Πϝʔδ ֶश ֶश ༧ଌ
3ͷSBOHFSQBDLBHFͳΒ QSPCBCJMJUZ͕ग़ྗՄೳ install.packages('Rcpp') install.packages('ranger') # make CV model CV.ranger <-
ranger(formula = CV ~ walk_time1+struct+struct_all +level3+direction+madori_num+madori_type_num+price_with_kanrihi +history_TOTAL+station1+bukken_shubetsu+gyosha_no, data = DFtrain, num.trees=300, write.forest =TRUE, probability =TRUE, always.split.variables= "station1") # prediction of CV model cv.predict <- predict(CVmodel,DF) # draw probabilities cv.predict$predictions[,2]
$71SPCBCJMJUZͷߴ͍ ॱʹϦετදࣔ
$71SPCBCJMJUZͷߴ͍ ॱʹϦετදࣔ ্
ʢతʣ $73վળ ʢख๏ʣ ̎ྨʢ$7֬Λܭࢉʣ ʢํ๏ʣ 3BOEPN'PSFTU RͩͱrangerͳͲ৽͍࣮͕͠Φεεϝʂʂ
ƅƁƅ Űŕ
ʮਓೳ࣌ʹඋ͑ͯ ෆಈ࢈ؔ࿈σʔλʹ͍ͭ ͯ৭ʑޠΒ͏ษڧձʯ
ਓೳͷఆٛ
ਓೳͷఆٛ %FFQ-FBSOJOHͰ ͳΜ͔Ͱ͖ͳ͍͔ͳʔ
%FFQ-FBSOJOH ͱ͍͑ը૾ղੳ
͜Ε·Ͱͷ݅αΠτʹ ͳ͍ըظతػೳʂ
ࣜτΠϨఆث
ࣜτΠϨఆث ࣜτΠϨ͚ͩઈରʹݏͩʂ ͱݴ͏ਓ͖ͬͱ͍Δʹ͕͍ͪͳ͍
H2O Deeplearning library(h2o) # Deep learningͰֶशͤ͞Δ localH2O <- h2o.init(ip =
"localhost", port = 54321, startH2O = TRUE, nthreads=-1) res.dl <- h2o.deeplearning(x = 2:10001, y = 1, training_frame = as.h2o(target), activation = "TanhWithDropout", hidden=rep(160,5), epochs = 20) pred.dl <- h2o.predict(object=res.dl, newdata = as.h2o(target)) pred <- as.data.frame(pred.dl) # ਖ਼ղΛ֬ೝ print(1-sum(abs(round(pred[,1]) - target[,1]))/length(target[,1])) ࣜτΠϨը૾ΛਓྗͰ݅ఔऩू ը૾αΠζΛἧ͑ͯɺάϨʔεέʔϧʹม %FFQMFBSOJOHͰࣜτΠϨఆثΛ࡞
H2O Deeplearning ਖ਼ղɿ ࣜτΠϨը૾ΛਓྗͰ݅ఔऩू ը૾αΠζΛἧ͑ͯɺάϨʔεέʔϧʹม %FFQMFBSOJOHͰࣜτΠϨఆثΛ࡞
ʢࠓͷ͓ʣ ೖྗϛεσʔλআ ಛघ݅ఆ $73վળϑΟϧλ ࣜτΠϨఆث
ͬͱ݅બͼΛ ָ͍͠ͷʹͯ͠ ͍͖·͠ΐ͏ʂ
͋Γ͕ͱ͏͍͟͝·ͨ͠