Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DL in MRI
Search
Tsung-Yung Lu
October 29, 2019
0
81
DL in MRI
Application of deep learning in MRI
Tsung-Yung Lu
October 29, 2019
Tweet
Share
More Decks by Tsung-Yung Lu
See All by Tsung-Yung Lu
The GEMPix detector
higumalu
0
16
Respiratory Gating for Radiotherapy
higumalu
0
420
Cholescintigraphy
higumalu
0
110
Cardiac CT
higumalu
0
170
Class Report of PETCT Model
higumalu
0
37
Generate Abnor Echo Image
higumalu
0
48
淺談影像處理
higumalu
0
75
Tc99m
higumalu
0
120
Featured
See All Featured
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Side Projects
sachag
452
42k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
1.2k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Navigating Team Friction
lara
183
15k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Transcript
Deep Learning In medical imaging focusing on MRI LTY,2019 1
OVERVIEW ► Machine Learning ► Data Acquisition ► Higher-level applications
of DL in MRI ► Challenges 2
Machine Learning 3
Machine Learning ► Artificial neural networks ► Deep learning ►
Convolutional neural networks ► Generative adversarial network 4
Artificial neural networks 5
Deep learning 6
Convolutional neural networks 7
Generative adversarial network 8
9
Data Acquisition 10
Data Acquisition ► Image reconstruction ► Image restoration ► Image
Super-Resolution (SR) ► Image synthesis 11
Image reconstruction Visualization results of intermediate steps during the iterations
of a reconstruction. (a) Undersampled image by acceleration factor 9 (b) Ground Truth (c-l) Results from intermediate steps 1 to 10 in a reconstruction process CRNN Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction
Image reconstruction • The comparison of reconstructions on spatial dimension
with their error maps. • (a) Ground Truth • (b) Undersampled image by acceleration factor 9 • (c,d) Proposed-B • (e,f) 3D CNN • (g,h) 3D CNN-S • (i,j) k-t FOCUSS • (k,l) k-t SLR
Image restoration : Denoising 14 Deep Learning Approaches for Detection
and Removal of Ghosting Artifacts in MR Spectroscopy
Image SR ► Super Resolution GAN (SRGAN) ► Network ►
Discriminator : HR image (T/F) ► Generator : LR→HR 15
Image synthesis : DCGAN • Data augmentation • Network •
Discriminator : Real image • Generator : Synthetic image
Image synthesis : CycleGAN 17 T1 → T2 T2 →
T1
Higher-level Applications of DL in MRI 18
Higher-level Applications of DL in MRI ► Image segmentation ►
Prediction 19
Image segmentation ► Whole Brain ► Polycystic Kidneys 20
SLANT : Whole Brain Segmentation 21 3D Whole Brain Segmentation
using Spatially Localized Atlas Network Tiles
22 3D Whole Brain Segmentation using Spatially Localized Atlas Network
Tiles
Automated Segmentation of Polycystic Kidneys 23 Performance of an Artificial
Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537093/
Prediction ► Brain ► Kidney ► Prostate ► Spine 24
Brain ► Brain extraction ► Functional connectomes ► Structural connectomes
► Brain age ► Alzheimer’s disease ► Vascular lesions ► Identification of MRI contrast ► Meningioma ► Glioma ► Multiple sclerosis 25
Kidney ► Abdominal organs ► Cyst segmentation ► Renal transplant
26
Prostate ► Cancer 27
Spine ► Vertebrae labeling ► Intervertebral disc localization ► Lumbal
neural forminal stenosis (LNFS) 28
DeepSPINE 29
LNFS 30 Automated Pathogenesis-Based Diagnosis of Lumbar Neural Foraminal Stenosis
via Deep Multiscale Multitask Learning
Challenges 31
Challenges ► Medical imaging data sets and repositories ► Medical
imaging competitions ► Data ► Interpretability 32
Data Sets and Repositories ► [TCIA] ► “Large” ► cancer
imaging ► [OpenNeuro] ► brain images ► 168 studies ► 4,718 participants ► [UK Biobank] ► 15,000 participants ► [ADNI] ► Alzheimer’s disease neuroimaging ► 2,000 participants 33
Competitions ► [Grand Challenges] ► Almost all of challenges ►
[Kaggle] 34
REFERENCE ► Alexander SelvikvågLundervold, al. An overview of deep learning
in medical imaging focusing on MRI, Zeitschrift für Medizinische Physik Volume 29, Issue 2, May 2019, Pages 102-127. 35
Thanks! 36
[email protected]
https://github.com/higumalu
Q&A 37