Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メルカリのマーケット健全化施策を支えるML基盤
Search
Hirofumi Nakagawa/中河 宏文
May 23, 2018
Programming
10
9.1k
メルカリのマーケット健全化施策を支えるML基盤
Hirofumi Nakagawa/中河 宏文
May 23, 2018
Tweet
Share
More Decks by Hirofumi Nakagawa/中河 宏文
See All by Hirofumi Nakagawa/中河 宏文
IoTデバイスでMLモデルを動かす技術
hnakagawa
0
200
Kanazawa_AI.pdf
hnakagawa
0
200
メルカリ写真検索における Amazon EKS の活用事例と プロダクトにおけるEdgeAI technologyの展望
hnakagawa
5
9.1k
メルカリの写真検索を支えるバックエンド CCSE 2019 version
hnakagawa
0
340
メルカリ写真検索における Amazon EKS の活用事例
hnakagawa
6
29k
メルカリの写真検索を支えるバックエンド
hnakagawa
1
1.2k
Mercari ML Platform
hnakagawa
1
17k
mlct.pdf
hnakagawa
2
2.1k
機械学習によるマーケット健全化施策を支える技術
hnakagawa
0
260
Other Decks in Programming
See All in Programming
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.6k
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
170
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
ゆくKotlin くるRust
exoego
1
200
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
170
Context is King? 〜Verifiability時代とコンテキスト設計 / Beyond "Context is King"
rkaga
10
1.6k
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
40k
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
450
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
790
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
210
Architectural Extensions
denyspoltorak
0
120
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
940
Featured
See All Featured
Designing for humans not robots
tammielis
254
26k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
190
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
42
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
130
Thoughts on Productivity
jonyablonski
74
5k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
51k
Chasing Engaging Ingredients in Design
codingconduct
0
97
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
190
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
140
Transcript
ϝϧΧϦͷϚʔέοτ݈શԽ ࢪࡦΛࢧ͑ΔMLج൫ Mercari ML Ops Night Vol.1 hnakagawa
ࣗݾհ • Hirofumi Nakagawa (hnakagawa) • 20177݄ೖࣾ • ॴଐSRE •
σόΠευϥΠό։ൃ͔Βϑϩϯ τΤϯυ։ൃ·ͰΔԿͰ • NOT MLΤϯδχΞ • https://github.com/hnakagawa
͓ࣄ • ML Platform։ൃ • MLΤϯδχΞͱSREͷεΩϧΪϟοϓΛຒΊ Δ • ML Reliability,
SysML?, MLOps? • SREͷཱ͔ΒMLγεςϜͷࣗಈԽΛߦ͏
ML Platform • ͷML Platform • kubernetesϕʔε • ϩʔΧϧڥͱΫϥελڥͷ ࠩΛநԽ͢Δ
• ศརAPI܈ • طଘͷML FrameworkΛ༻͠ ؆୯ʹTraining/ServingΛߦ͏ ڥΛఏڙ
ͦͷ͏ͪOSSͰެ։༧ఆ(ଟ
ࣄྫ ϦΞϧλΠϜࢹγεςϜ • ௨শ Lovemachine • ML Platform্ʹ࣮͞Ε͍ͯΔ .-1MBUGPSN USBJOJOHDMVTUFS
-PWFNBDIJOF ($4 GKE PubSub .-1MBUGPSN TFSWJOHDMVTUFS -PWFNBDIJOF
Model Training & Serving Workflow
.-1MBUGPSN USBJOJOHDMVTUFS Workflow for Production $* .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ +PC
+PC ɾɾ 3&45 "1* 4USFBNJOH 5' 4FSWJOH ɾɾɾ
.-1MBUGPSN USBJOJOHDMVTUFS Training Workflow $* .PEFM3FHJTUSZ +PC +PC ɾɾɾ 1.
GitHubͷpushΛτϦΨʹtrainingΛىಈ 2. Training͞ΕͨModelModel Registry ্͕Δ
Serving Workflow .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ ɾɾ 3&45 "1* 4USFBNJOH 5'
4FSWJOH ɾɾɾ 1. Model RegistryΛࢹͯࣗ͠ಈͰModel ΛServing 2. Serving&Test͕ޭ͢Δͱຊ൪༻k8s manifestΛग़ྗ
Model Serving APIͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM 5' .PEFM 'MBTL
4, .PEFM 4, .PEFM 4, .PEFM gRPC .FSDBSJ"1* REST FlaskͰલॲཧΛߦ͍ ཪͷTensorFlow Servingʹ͍͛ͯΔ
Model Serving API Streaming ver ͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM
5' .PEFM .-1MBUGPSN 'SBNFXPSL PS "QBDIF#FBN 4, .PEFM 4, .PEFM 4, .PEFM gRPC PubSub
TensorFlow Serving • TensorFlow project͕ఏڙͯ͠ ͍ΔServingڥ • PythonॲཧܥΛհͣ͞ʹTFͷ modelΛservingͰ͖Δ •
ඪ४ͷ࣮ͰgRPCͰAPIΛ ఏڙ
ModelͱίϯςφɾΠϝʔδ • ڊେͳML ModelΛίϯςφɾΠϝʔδʹؚΊ Δ͔൱͔ • ؚΊͳ͍ͷͰ͋ΕԿॲʹஔ͢Δ͔ • ϙʔλϏϦςΟੑͱϩʔυ࣌ؒͷτϨʔυΦϑ •
ྑ͍ΞΠσΟΞ͕͋Εڭ͑ͯԼ͍͞…
௨ৗͷAPIͱҧ͏ • ѻ͏ϦιʔεɺModelαΠζ͕େ͖͘ͳΔ ߹͕ଟ͍(ඦMBʙGB) • CPUɾϝϞϦϦιʔεͷফඅ͕ܹ͍͠ • ߹ʹΑͬͯGPU͏
ϝϞϦফඅ • LovemachineͷPython࣮෦࣮ߦ࣌ʹ 2GBϝϞϦΛফඅ͢Δˠࠓޙ͞Βʹ૿͑Δ༧ ఆ͋Δ • Scikit-learnͰهड़͞ΕͨTF-IDFͷલॲཧ෦ ͕େ͖͘ͳΔࣄ͕ଟ͍
Pythonͱฒྻੑ • વThread͕͑ͳ͍(GILͷͨΊ) • ϓϩηεຖʹModelΛϩʔυ͢Δͱඞཁͳϝ ϞϦαΠζ͕େ͖͘ͳΔˠ Blue-Green DeployͷোʹͳΔ
ਖ਼PythonͰͷServing Πϯϑϥతʹਏ͍ࣄ͕ଟ͍…
ϝϞϦΛݡ͘͏ • fork͢ΔલʹmodelΛϩʔυ͠Copy on Write Λޮ͔͢ • k8sͷone process per
containerηΦϦ͋ ͑ͯഁ͍ͬͯΔ
Copy On Writeͷ෮श ϝϞϦ ϓϩηε ࢠϓϩηε 2.fork 1BHF" 1.allocation ಉ͡ྖҬΛࢀর
ϓϩηε͕ϝϞϦͷ༰Λ ॻ͖͑Δͱ… ϝϞϦ ϓϩηε ࢠϓϩηε 1BHF" 1BHF# OS͕ผͷྖҬΛAllocationͯ͠ݩσʔλΛίϐʔ͢Δ ผͷྖҬΛࢀর
Current Issues • ਓؒͷߦಈΛ૬खʹ͍ͯ͠Δҝɺσʔλͷ ͕มΘΓ͔ͬͨ͢Γɺ༧֎ͷ͕ൃ ੜͨ͠Γͯ͠ɺରԠ͠ଓ͚Δඞཁ͕͋Δ ˠ ML Model࡞ऀʹෛ୲ֻ͕͔Γଓ͚Δ ˠ
SREͱͯࣗ͠ಈԽΛؚΜͩΈͰղܾ ͍ͨ͠
In Progress • ࣾͷσʔλ͔ΒEmbedding͢Δ࣮Λίϯ ϙʔωϯτԽ • ಛఆͷΛղܾ͢ΔϞσϧߏஙΛ͋Δఔ ࣗಈԽ ˠࣾͷղܾʹಛԽͨ͠ઐ༻ͷAutoMLత ͳԿ͔
AutoFlow(Ծ) 'FBUVSF&YUSBDUJPO $PNQPOFOUT $MBTTJpDBUJPO $PNQPOFOUT $PODBUFOBUJPO $PNQPOFOUT .PEFM #VJMEFS $PNQPOFOUT
3FHJTUSZ Ϋϥελ্ͰϞσϧͷࣗಈߏஙͱϋΠύʔύϥ ϝʔλͷࣗಈௐΛߦ͏
·ͱΊ • MLʹগ͠௨ৗͱҧ͏Πϯϑϥ͕ඞཁʹͳΔ ˠ·ͩϕετɾϓϥΫςΟε͔Βͳ͍ • ͦͦMLͳػೳΛຊ֨ӡ༻͠Α͏ͱ͢Δ ͱɺେ෯ͳࣗಈԽɾΈԽΛਐΊͳ͍ͱ্ ख͘ߦ͔ͳ͍
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠!!
We are Hiring!!
SRE ML Reliability • SysML? MLOps? ৽͍͠Job description • SREεΩϧ+MLͷجૅࣝ
• MLΠϯϑϥͷࣗಈԽɾΈԽΛਪ͠ਐΊͯ ͘ΕΔਓࡐ • ͪΖΜଞͷ৬छઈࢍืूத!!
ৄࡉͪ͜Β https://careers.mercari.com/