Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
メルカリのマーケット健全化施策を支えるML基盤
Search
Hirofumi Nakagawa/中河 宏文
May 23, 2018
Programming
10
8.9k
メルカリのマーケット健全化施策を支えるML基盤
Hirofumi Nakagawa/中河 宏文
May 23, 2018
Tweet
Share
More Decks by Hirofumi Nakagawa/中河 宏文
See All by Hirofumi Nakagawa/中河 宏文
IoTデバイスでMLモデルを動かす技術
hnakagawa
0
150
Kanazawa_AI.pdf
hnakagawa
0
160
メルカリ写真検索における Amazon EKS の活用事例と プロダクトにおけるEdgeAI technologyの展望
hnakagawa
5
8.8k
メルカリの写真検索を支えるバックエンド CCSE 2019 version
hnakagawa
0
290
メルカリ写真検索における Amazon EKS の活用事例
hnakagawa
6
29k
メルカリの写真検索を支えるバックエンド
hnakagawa
1
1.1k
Mercari ML Platform
hnakagawa
1
17k
mlct.pdf
hnakagawa
2
2k
機械学習によるマーケット健全化施策を支える技術
hnakagawa
0
220
Other Decks in Programming
See All in Programming
『GO』アプリ データ基盤のログ収集システムコスト削減
mot_techtalk
0
120
CDK開発におけるコーディング規約の運用
yamanashi_ren01
2
120
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
260
PHPカンファレンス名古屋2025 タスク分解の試行錯誤〜レビュー負荷を下げるために〜
soichi
1
200
密集、ドキュメントのコロケーション with AWS Lambda
satoshi256kbyte
0
190
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
kasacchiful
0
170
データベースのオペレーターであるCloudNativePGがStatefulSetを使わない理由に迫る
nnaka2992
0
150
Honoのおもしろいミドルウェアをみてみよう
yusukebe
1
210
技術を根付かせる / How to make technology take root
kubode
1
250
2024年のkintone API振り返りと2025年 / kintone API look back in 2024
tasshi
0
220
CSS Linter による Baseline サポートの仕組み
ryo_manba
1
110
DROBEの生成AI活用事例 with AWS
ippey
0
130
Featured
See All Featured
It's Worth the Effort
3n
184
28k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.3k
Gamification - CAS2011
davidbonilla
80
5.1k
Site-Speed That Sticks
csswizardry
4
380
Being A Developer After 40
akosma
89
590k
Rails Girls Zürich Keynote
gr2m
94
13k
The Cult of Friendly URLs
andyhume
78
6.2k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
366
25k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Transcript
ϝϧΧϦͷϚʔέοτ݈શԽ ࢪࡦΛࢧ͑ΔMLج൫ Mercari ML Ops Night Vol.1 hnakagawa
ࣗݾհ • Hirofumi Nakagawa (hnakagawa) • 20177݄ೖࣾ • ॴଐSRE •
σόΠευϥΠό։ൃ͔Βϑϩϯ τΤϯυ։ൃ·ͰΔԿͰ • NOT MLΤϯδχΞ • https://github.com/hnakagawa
͓ࣄ • ML Platform։ൃ • MLΤϯδχΞͱSREͷεΩϧΪϟοϓΛຒΊ Δ • ML Reliability,
SysML?, MLOps? • SREͷཱ͔ΒMLγεςϜͷࣗಈԽΛߦ͏
ML Platform • ͷML Platform • kubernetesϕʔε • ϩʔΧϧڥͱΫϥελڥͷ ࠩΛநԽ͢Δ
• ศརAPI܈ • طଘͷML FrameworkΛ༻͠ ؆୯ʹTraining/ServingΛߦ͏ ڥΛఏڙ
ͦͷ͏ͪOSSͰެ։༧ఆ(ଟ
ࣄྫ ϦΞϧλΠϜࢹγεςϜ • ௨শ Lovemachine • ML Platform্ʹ࣮͞Ε͍ͯΔ .-1MBUGPSN USBJOJOHDMVTUFS
-PWFNBDIJOF ($4 GKE PubSub .-1MBUGPSN TFSWJOHDMVTUFS -PWFNBDIJOF
Model Training & Serving Workflow
.-1MBUGPSN USBJOJOHDMVTUFS Workflow for Production $* .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ +PC
+PC ɾɾ 3&45 "1* 4USFBNJOH 5' 4FSWJOH ɾɾɾ
.-1MBUGPSN USBJOJOHDMVTUFS Training Workflow $* .PEFM3FHJTUSZ +PC +PC ɾɾɾ 1.
GitHubͷpushΛτϦΨʹtrainingΛىಈ 2. Training͞ΕͨModelModel Registry ্͕Δ
Serving Workflow .-1MBUGPSN TFSWJOHDMVTUFSGPSUFTU .PEFM3FHJTUSZ ɾɾ 3&45 "1* 4USFBNJOH 5'
4FSWJOH ɾɾɾ 1. Model RegistryΛࢹͯࣗ͠ಈͰModel ΛServing 2. Serving&Test͕ޭ͢Δͱຊ൪༻k8s manifestΛग़ྗ
Model Serving APIͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM 5' .PEFM 'MBTL
4, .PEFM 4, .PEFM 4, .PEFM gRPC .FSDBSJ"1* REST FlaskͰલॲཧΛߦ͍ ཪͷTensorFlow Servingʹ͍͛ͯΔ
Model Serving API Streaming ver ͷߏྫ 5FOTPS'MPX 4FSWJOH 5' .PEFM
5' .PEFM .-1MBUGPSN 'SBNFXPSL PS "QBDIF#FBN 4, .PEFM 4, .PEFM 4, .PEFM gRPC PubSub
TensorFlow Serving • TensorFlow project͕ఏڙͯ͠ ͍ΔServingڥ • PythonॲཧܥΛհͣ͞ʹTFͷ modelΛservingͰ͖Δ •
ඪ४ͷ࣮ͰgRPCͰAPIΛ ఏڙ
ModelͱίϯςφɾΠϝʔδ • ڊେͳML ModelΛίϯςφɾΠϝʔδʹؚΊ Δ͔൱͔ • ؚΊͳ͍ͷͰ͋ΕԿॲʹஔ͢Δ͔ • ϙʔλϏϦςΟੑͱϩʔυ࣌ؒͷτϨʔυΦϑ •
ྑ͍ΞΠσΟΞ͕͋Εڭ͑ͯԼ͍͞…
௨ৗͷAPIͱҧ͏ • ѻ͏ϦιʔεɺModelαΠζ͕େ͖͘ͳΔ ߹͕ଟ͍(ඦMBʙGB) • CPUɾϝϞϦϦιʔεͷফඅ͕ܹ͍͠ • ߹ʹΑͬͯGPU͏
ϝϞϦফඅ • LovemachineͷPython࣮෦࣮ߦ࣌ʹ 2GBϝϞϦΛফඅ͢Δˠࠓޙ͞Βʹ૿͑Δ༧ ఆ͋Δ • Scikit-learnͰهड़͞ΕͨTF-IDFͷલॲཧ෦ ͕େ͖͘ͳΔࣄ͕ଟ͍
Pythonͱฒྻੑ • વThread͕͑ͳ͍(GILͷͨΊ) • ϓϩηεຖʹModelΛϩʔυ͢Δͱඞཁͳϝ ϞϦαΠζ͕େ͖͘ͳΔˠ Blue-Green DeployͷোʹͳΔ
ਖ਼PythonͰͷServing Πϯϑϥతʹਏ͍ࣄ͕ଟ͍…
ϝϞϦΛݡ͘͏ • fork͢ΔલʹmodelΛϩʔυ͠Copy on Write Λޮ͔͢ • k8sͷone process per
containerηΦϦ͋ ͑ͯഁ͍ͬͯΔ
Copy On Writeͷ෮श ϝϞϦ ϓϩηε ࢠϓϩηε 2.fork 1BHF" 1.allocation ಉ͡ྖҬΛࢀর
ϓϩηε͕ϝϞϦͷ༰Λ ॻ͖͑Δͱ… ϝϞϦ ϓϩηε ࢠϓϩηε 1BHF" 1BHF# OS͕ผͷྖҬΛAllocationͯ͠ݩσʔλΛίϐʔ͢Δ ผͷྖҬΛࢀর
Current Issues • ਓؒͷߦಈΛ૬खʹ͍ͯ͠Δҝɺσʔλͷ ͕มΘΓ͔ͬͨ͢Γɺ༧֎ͷ͕ൃ ੜͨ͠Γͯ͠ɺରԠ͠ଓ͚Δඞཁ͕͋Δ ˠ ML Model࡞ऀʹෛ୲ֻ͕͔Γଓ͚Δ ˠ
SREͱͯࣗ͠ಈԽΛؚΜͩΈͰղܾ ͍ͨ͠
In Progress • ࣾͷσʔλ͔ΒEmbedding͢Δ࣮Λίϯ ϙʔωϯτԽ • ಛఆͷΛղܾ͢ΔϞσϧߏஙΛ͋Δఔ ࣗಈԽ ˠࣾͷղܾʹಛԽͨ͠ઐ༻ͷAutoMLత ͳԿ͔
AutoFlow(Ծ) 'FBUVSF&YUSBDUJPO $PNQPOFOUT $MBTTJpDBUJPO $PNQPOFOUT $PODBUFOBUJPO $PNQPOFOUT .PEFM #VJMEFS $PNQPOFOUT
3FHJTUSZ Ϋϥελ্ͰϞσϧͷࣗಈߏஙͱϋΠύʔύϥ ϝʔλͷࣗಈௐΛߦ͏
·ͱΊ • MLʹগ͠௨ৗͱҧ͏Πϯϑϥ͕ඞཁʹͳΔ ˠ·ͩϕετɾϓϥΫςΟε͔Βͳ͍ • ͦͦMLͳػೳΛຊ֨ӡ༻͠Α͏ͱ͢Δ ͱɺେ෯ͳࣗಈԽɾΈԽΛਐΊͳ͍ͱ্ ख͘ߦ͔ͳ͍
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠!!
We are Hiring!!
SRE ML Reliability • SysML? MLOps? ৽͍͠Job description • SREεΩϧ+MLͷجૅࣝ
• MLΠϯϑϥͷࣗಈԽɾΈԽΛਪ͠ਐΊͯ ͘ΕΔਓࡐ • ͪΖΜଞͷ৬छઈࢍืूத!!
ৄࡉͪ͜Β https://careers.mercari.com/