Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近のUplift Modeling手法にRでトライ
Search
hskksk
December 09, 2024
Technology
0
530
最近のUplift Modeling手法にRでトライ
Japan.R 2024のLTで使用したスライドです。
hskksk
December 09, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
540
未経験者・初心者に贈る!40分でわかるAndroidアプリ開発の今と大事なポイント
operando
5
730
Terraformで構築する セルフサービス型データプラットフォーム / terraform-self-service-data-platform
pei0804
1
190
KotlinConf 2025_イベントレポート
sony
1
140
Practical Agentic AI in Software Engineering
uzyn
0
110
プラットフォーム転換期におけるGitHub Copilot活用〜Coding agentがそれを加速するか〜 / Leveraging GitHub Copilot During Platform Transition Periods
aeonpeople
1
210
【NoMapsTECH 2025】AI Edge Computing Workshop
akit37
0
220
【実演版】カンファレンス登壇者・スタッフにこそ知ってほしいマイクの使い方 / 大吉祥寺.pm 2025
arthur1
1
890
スクラムガイドに載っていないスクラムのはじめかた - チームでスクラムをはじめるときに知っておきたい勘所を集めてみました! - / How to start Scrum that is not written in the Scrum Guide 2nd
takaking22
1
110
5分でカオスエンジニアリングを分かった気になろう
pandayumi
0
250
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
190
品質視点から考える組織デザイン/Organizational Design from Quality
mii3king
0
210
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
GitHub's CSS Performance
jonrohan
1032
460k
Gamification - CAS2011
davidbonilla
81
5.4k
The Invisible Side of Design
smashingmag
301
51k
Six Lessons from altMBA
skipperchong
28
4k
Faster Mobile Websites
deanohume
309
31k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Automating Front-end Workflow
addyosmani
1370
200k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Transcript
最近のUplift Modeling 手法にRでトライ Japan.R 2024 2024/12/7 保坂 桂佑
• 保坂桂佑(X: @free_skier) • ヘルスケアスタートアップでデータサイエンティストをしています • 趣味:スキー、インドカレーづくり、キーボード自作 • 著書(共著)に「Kaggleで勝つデータ分析の技術」があります 自己紹介
このLTで話すこと • Li, K., & Zhu, L. (2024, May). A
New Transformation Approach for Uplift Modeling with Binary Outcome で精度の良いUplift Modeling の新しい方法が提案された • 概要を紹介 • 簡単な実験結果を紹介
Uplift Modelingとは 統計的因果推論におけるConditional Average Treatment Effect(CATE) を求める手法 CATEは以下の式で表される ある特徴 Xi
= x を持つ対象への介入効果を推定する手法と言える
変数変換によるアプローチ アクション有無Yと介入有無Wに対する変数変換で求めたZ*を目的変数 とした回帰モデルを作ると、CATEを推定するモデルが作れる (pは傾向スコア) ケースごとのZ* の値
情報の無駄をなくす 前ページの方法では「介入しても来なかった」「介入しないで来なかった」が同じ扱 いだった 「介入しても来なかった」ことは、「介入しないで来なかった」ことよりは悪いので、 良し悪しの重みをつける方法が提案された A New Transformation Approach for
Uplift Modeling with Binary Outcome ケースごとのZ* の値
Cを変えるとどうなるか C=0は旧手法と同じ。Cを大きくすると、事例の評価がファジーになる
実験 • 介入効果がわかっている簡単なデータを作り、介入効果の推定精度 を比較 • 傾向スコアをロジスティック回帰で、介入効果の推定を線形回帰で実 施 ダミーデータのグラフィカルモデル ダミーデータを作るコード
結果 • Uplift Modelingの評価にはQini曲線とその下の面積を使う (ゲインチャートやAUCのようなものだと思ってください) • 元の方法よりもQini曲線下の面積が大きくなった(=高精度) • C=0.15の結果
Cをどんな値にすると精度がよくなるの? 精度を最大化するCがあるみたい 精度を 最大化するC
いつでも新手法のほうが精度いいの? • いろいろなシードのダミーデータで同じことを実験 • 旧手法の方が精度が良いこともあった。Cをチューニングするのが良さそう
まとめ • A New Transformation Approach for Uplift Modeling with
Binary Outcome で精度の良いUplift Modelingの新しい方法を紹介 • 簡単な実験で旧手法より精度が良くなることを確認 • データごとにCに最適値がありそう • データによっては旧手法(C=0)のほうが高精度の場合もある
ご清聴ありがとう ございました!