Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
最近のUplift Modeling手法にRでトライ
Search
hskksk
December 09, 2024
Technology
0
440
最近のUplift Modeling手法にRでトライ
Japan.R 2024のLTで使用したスライドです。
hskksk
December 09, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
20241125 - AI 繪圖實戰魔法工作坊 @ 實踐大學
dpys
1
450
機械学習を「社会実装」するということ 2025年版 / Social Implementation of Machine Learning 2025 Version
moepy_stats
3
370
SpiderPlus & Co. エンジニア向け会社紹介資料
spiderplus_cb
0
650
「完全に理解したTalk」完全に理解した
segavvy
1
280
OPENLOGI Company Profile
hr01
0
58k
シフトライトなテスト活動を適切に行うことで、無理な開発をせず、過剰にテストせず、顧客をビックリさせないプロダクトを作り上げているお話 #RSGT2025 / Shift Right
nihonbuson
3
1.8k
Fearsome File Formats
ange
0
580
カップ麺の待ち時間(3分)でわかるPartyRockアップデート
ryutakondo
0
100
20240522 - 躍遷創作理念 @ PicCollage Workshop
dpys
0
310
知っててうれしい SQL について
greendrop
0
110
Unsafe.BitCast のすゝめ。
nenonaninu
0
160
LangGraphとFlaskを用いた社内資料検索ボットの実装②Retriever構築編
aoikumadaki
0
100
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Designing for humans not robots
tammielis
250
25k
Writing Fast Ruby
sferik
628
61k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
For a Future-Friendly Web
brad_frost
176
9.5k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
What's in a price? How to price your products and services
michaelherold
244
12k
BBQ
matthewcrist
85
9.4k
Designing Experiences People Love
moore
139
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
Transcript
最近のUplift Modeling 手法にRでトライ Japan.R 2024 2024/12/7 保坂 桂佑
• 保坂桂佑(X: @free_skier) • ヘルスケアスタートアップでデータサイエンティストをしています • 趣味:スキー、インドカレーづくり、キーボード自作 • 著書(共著)に「Kaggleで勝つデータ分析の技術」があります 自己紹介
このLTで話すこと • Li, K., & Zhu, L. (2024, May). A
New Transformation Approach for Uplift Modeling with Binary Outcome で精度の良いUplift Modeling の新しい方法が提案された • 概要を紹介 • 簡単な実験結果を紹介
Uplift Modelingとは 統計的因果推論におけるConditional Average Treatment Effect(CATE) を求める手法 CATEは以下の式で表される ある特徴 Xi
= x を持つ対象への介入効果を推定する手法と言える
変数変換によるアプローチ アクション有無Yと介入有無Wに対する変数変換で求めたZ*を目的変数 とした回帰モデルを作ると、CATEを推定するモデルが作れる (pは傾向スコア) ケースごとのZ* の値
情報の無駄をなくす 前ページの方法では「介入しても来なかった」「介入しないで来なかった」が同じ扱 いだった 「介入しても来なかった」ことは、「介入しないで来なかった」ことよりは悪いので、 良し悪しの重みをつける方法が提案された A New Transformation Approach for
Uplift Modeling with Binary Outcome ケースごとのZ* の値
Cを変えるとどうなるか C=0は旧手法と同じ。Cを大きくすると、事例の評価がファジーになる
実験 • 介入効果がわかっている簡単なデータを作り、介入効果の推定精度 を比較 • 傾向スコアをロジスティック回帰で、介入効果の推定を線形回帰で実 施 ダミーデータのグラフィカルモデル ダミーデータを作るコード
結果 • Uplift Modelingの評価にはQini曲線とその下の面積を使う (ゲインチャートやAUCのようなものだと思ってください) • 元の方法よりもQini曲線下の面積が大きくなった(=高精度) • C=0.15の結果
Cをどんな値にすると精度がよくなるの? 精度を最大化するCがあるみたい 精度を 最大化するC
いつでも新手法のほうが精度いいの? • いろいろなシードのダミーデータで同じことを実験 • 旧手法の方が精度が良いこともあった。Cをチューニングするのが良さそう
まとめ • A New Transformation Approach for Uplift Modeling with
Binary Outcome で精度の良いUplift Modelingの新しい方法を紹介 • 簡単な実験で旧手法より精度が良くなることを確認 • データごとにCに最適値がありそう • データによっては旧手法(C=0)のほうが高精度の場合もある
ご清聴ありがとう ございました!