Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Decentralized Federated Learning with Blockchain
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Yoshio Sugiyama
July 14, 2022
Technology
0
1.3k
Decentralized Federated Learning with Blockchain
非中央集権な連合学習について
Yoshio Sugiyama
July 14, 2022
Tweet
Share
More Decks by Yoshio Sugiyama
See All by Yoshio Sugiyama
AIの本格活用を加速させるPrivate LLM
imokuri
0
220
Other Decks in Technology
See All in Technology
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.2k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
440
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
1
370
Agile Leadership Summit Keynote 2026
m_seki
1
500
データの整合性を保ちたいだけなんだ
shoheimitani
8
3k
Context Engineeringが企業で不可欠になる理由
hirosatogamo
PRO
3
430
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
340
制約が導く迷わない設計 〜 信頼性と運用性を両立するマイナンバー管理システムの実践 〜
bwkw
3
880
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
220
Digitization部 紹介資料
sansan33
PRO
1
6.8k
Introduction to Bill One Development Engineer
sansan33
PRO
0
360
Featured
See All Featured
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
91
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
63
Navigating Team Friction
lara
192
16k
Facilitating Awesome Meetings
lara
57
6.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Leo the Paperboy
mayatellez
4
1.4k
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
72
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
We Are The Robots
honzajavorek
0
160
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
Transcript
杉山 禎夫 ディープラーニングで実現するイノベーション 非中央集権の連合学習
自己紹介
本日のお話 非中央集権の連合学習とは 連合学習の懸念とは 連合学習とは
自社だけだと足りないので、 他社と一緒にできないだろうか。 プライバシー保護の観点から 容易に移動できません。 地理的に離れた場所にあります。 もし、学習に使いたいデータが、、
各拠点で学習した結果を 集めてモデルを更新 • よさそう • 連合学習 といいます データを集めて学習 • 一箇所に集めるの大変
• プライバシー保護に懸念 各拠点で個別に学習 • データを活かせていない • 精度に課題 こんなアプローチがありそうです
リーダーがモデルを 用意 モデルをエッジに配 布 エッジで学習 学習結果をリーダー に集約 リーダーが学習結果 をマージ マージした学習結果
でモデルを更新 を繰り返します。 連合学習とは 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
• 学習結果から学習 データを推測 • 恣意的なモデルの マージ • 最終的なモデルは リーダーが所持 •
リーダーが 単一障害点 連合学習の懸念 中央集権的なリーダーの存在 学習結果をリー ダーに返却 リーダーのモデル をエッジに配布 エッジで学習 エッジで学習 エッジで学習 学習結果を マージして、 モデルを更新
連合学習の懸念
エッジで学習 非中央集権の連合学習に必要なもの エッジで学習 エッジで学習 エッジで学習 考えられる要件 • エッジ間を で接続 •
学習に参加しているエッジの把握 • マージ担当者の動的な選択 • 学習状況の記録、共有 • 最終的なモデルはエッジに の特徴 • データは各システムで保持 • リーダー不在 • 改ざんが非常に困難 • 記録は消せない
ディープラーニングに使用したいデータが、地理的に離れた場所にある、プライバシー保 護の観点からデータの共有が困難であるときなどに、連合学習というアプローチがありま す。 一般的な連合学習は、プライバシーの保護などに懸念があります。 連合学習を非中央集権 とすることで、連合学習の懸念が解消できます。 非中央集権の連合学習の実現には学習状況の共有方法などクリアすべき課題があります。 非中央集権の連合学習の課題の解決には、 が有効と考えられています。 まとめ
コミュニティ版 無料 と エンタープライズ版 があります 含むすべてのコンポー ネントはコンテナで動きます や のコードに 入れるだけで使えます
宣伝 エッジで学習 を使った 非中央集権 の連合学習のソリューションです。
None