Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeepNLP_BackPropagation_Rnn_and_Cnn
Search
izuna385
July 02, 2018
Science
0
170
DeepNLP_BackPropagation_Rnn_and_Cnn
深層学習による自然言語処理 2.5から2.9まで
izuna385
July 02, 2018
Tweet
Share
More Decks by izuna385
See All by izuna385
jel: japanese entity linker
izuna385
0
370
Firebase-React-App
izuna385
0
250
React+FastAPIを用いた簡単なWebアプリ作製
izuna385
0
1.7k
UseCase of Entity Linking
izuna385
0
570
Unofficial slides: From Zero to Hero: Human-In-The-Loop Entity Linking in Low Resource Domains (ACL 2020)
izuna385
1
660
Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring
izuna385
0
860
Zero-shot Entity Linking with Dense Entity Retrieval (Unofficial slides) and Entity Linking future directions
izuna385
3
1.1k
Entity representation with relational attention
izuna385
0
83
Zero-Shot Entity Linking by Reading Entity Descriptions
izuna385
0
560
Other Decks in Science
See All in Science
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
520
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
990
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
700
データベース02: データベースの概念
trycycle
PRO
2
770
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
200
Symfony Console Facelift
chalasr
2
460
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
280
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
760
サイゼミ用因果推論
lw
1
7.4k
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
240
オンプレミス環境にKubernetesを構築する
koukimiura
0
280
Featured
See All Featured
Docker and Python
trallard
45
3.5k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
How STYLIGHT went responsive
nonsquared
100
5.6k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
Rails Girls Zürich Keynote
gr2m
95
14k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
How to Ace a Technical Interview
jacobian
278
23k
Building Adaptive Systems
keathley
43
2.7k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.6k
Transcript
5 . 1 2
• : D !(#) 1 ∇!(#) • L 1 )
) ( 1 S G G 1 & '()*+, = .(/ 012 .(⋯ .(/ 2 '()*+, + 5(2)))) 62 67 68 69 /(:) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ;2 ;7 /(:<2) = − 1 = = + 1
. . ! ℎ($) ℎ(&) ℎ(') (($) ((&) ((') ℎ(')=
( ' ( & ( $ ! *+(,) *- = *+(,) *.(/) 0 *.(/) *.(1) 0 *.(1) *- •
. . ! ℎ($) ℎ(&) '($) '(&)
. .
None
(
.( )
( )
2'+ )NN 2 #) 0%&1&-" (3*, )
.( !/$→ → Residual Connection, Batch Nomalization( ) ! Loss func ! Loss func
: Residual Connection –– F(x) (→-!()) F(x) + x
→ & " - Identity Mapping ' : -*&%,+' ./$ # Identity – [1] He, Kaiming, et al. "Identity mappings in deep residual networks." European Conference on Computer Vision. Springer, Cham, 2016. . .
. . (2.33) (2.34)
0 1 . 2 C2 2 " 3 2 3
2 ) 2 2 ( 3 23 2 !"#$ !" %"&$ %"#$ %" %"&$ '() '() '() '*+, '*+, -"#$ = /(!"#$ ) -" -"&$ %" !" M I NR 2 '*+, O L '() : input P / L !" = '*+, 2 !"#$ + '() %" ,, L
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )(
2 . 3 !" #$% &% !" #$' !" #$(
!% #$% !% #$' !% #$( !' #$% !' #$' !' #$( !( #$% !( #$' !( #$( &' &( )% )' )( • 23 !* # 1
: !"#$ !%& '( )( … … )*
'* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/
. - •
) (
8 99 2 :9.8 9 9 6 5 3 2
2 5 2 28 79 8 3 9 1 56 2 59 7 /0-
-5 1 02 1 25 58 8 ./ 8 .2
0 8
22/1 444 1 1 - 2 3--.-.3-. 11
http://deeplearning.stanford.edu/wiki/index .php/Feature_extraction_using_convolution
/885 6 0: 6. 5 5
RNN Vanishing/Exploding Gradient : !"#$ !%&
'( )( … … )* '* ………… ………… +( +* !"#$ (-) !%& (-) '% …… '/ )/ +/