Upgrade to Pro — share decks privately, control downloads, hide ads and more …

AIハッカソン 発表資料

AIハッカソン 発表資料

以下のイベントの発表資料

https://kobe-engr-lab.connpass.com/event/280327/

Jo Hattori

May 29, 2023
Tweet

More Decks by Jo Hattori

Other Decks in Technology

Transcript

  1. 技術構成 ▰ Backend: FastAPI(Python) ▰ Frontend: React, MUI, SWR, Recoil…

    ▰ LLM: OpenAI gpt-3.5-turbo, text-davinci-003 ▰ LLM Library: LangChain 弊社メインスタックはVue.js, Laravel 技術的な挑戦も含めた 4
  2. 指示→結果ではなく、指示→SQL生成に特化させる 各プロダクトのデータ構造に合わせたSQL 生成 8 1. 事前に配置したDDLファイルからSQLiteで一時DB作成 2. 入力プロンプトから使用するテーブル選択(LLM) 3. 使用するテーブル情報+プロンプト+テンプレでLLMへ

    4. SQLiteを対象とするがプロダクトDBに合わせた方言を指 定する(MySQL, Postgreなど) 5. 生成したSQLでは実行しない、しても空 →実行エラーを渡すことでクエリチェックできる 6. ユーザーへレスポンス
  3. LangChain Agentとは? プロンプトから手段・実行順番を解決しツールを組み合わ せて結果を導くもの。 LangChain Pandas DataFrame Agent CSV・JSONなどからDF+プロンプト→LLMへ LLMで実行コード生成・実行結果→LLMへ

    プロンプトと実行結果を比較・検討→LLMへ LLMから最終的な結果を出力 自社データの実行結果をLLMへ渡せない!2回目 CSVから可視化グラフを生成 10