Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初等確率論の基礎
Search
Koga Kobayashi
August 17, 2020
Research
1
160
初等確率論の基礎
「ベイズ統計の理論と方法」勉強会の資料
Koga Kobayashi
August 17, 2020
Tweet
Share
More Decks by Koga Kobayashi
See All by Koga Kobayashi
第13回 Data-Centric AI勉強会, LLMのファインチューニングデータ
kajyuuen
4
1k
基礎数学の公式
kajyuuen
1
120
Deep Markov Model を数式で追う (+ Pyroでの追試)
kajyuuen
0
850
Fundamentals of Music Processing (Chapter 5)
kajyuuen
0
62
完全なアノテーションが得られない状況下での固有表現抽出
kajyuuen
3
3.4k
SecHack365 北海道会 LT
kajyuuen
0
470
専門用語抽出手法の研究と 抽出アプリケーションの開発
kajyuuen
1
1.2k
Other Decks in Research
See All in Research
Elix, CBI2024, スポンサードセッション, Molecular Glue研究の展望:近年の進展とAI活用の可能性
elix
0
130
TransformerによるBEV Perception
hf149
1
690
非ガウス性と非線形性に基づく統計的因果探索
sshimizu2006
0
540
NeurIPS 2024 参加報告 & 論文紹介 (SACPO, Ctrl-G)
reisato12345
0
330
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
eAI (Engineerable AI) プロジェクトの全体像 / Overview of eAI Project
ishikawafyu
0
370
Weekly AI Agents News! 12月号 論文のアーカイブ
masatoto
0
190
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
290
Composed image retrieval for remote sensing
satai
2
240
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
400
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
1.1k
Practical The One Person Framework
asonas
1
2.1k
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
Code Review Best Practice
trishagee
67
18k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.3k
Code Reviewing Like a Champion
maltzj
521
39k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Designing Experiences People Love
moore
140
23k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.2k
Transcript
ॳ֬ͷجૅ ϕΠζ౷ܭͷཧͱํ๏ษڧձ
֬ͱ֬ม
֬ ϢʔΫϦουۭؒ ͷݩ ͷؔ ͕ ℝN x = (x1 ,
…, xN ) q(x) ≥ 0 ∫ q(x)dx ≡ ∫ dx1 ∫ dx2 … ∫ dxN q(x1 , x2 , ⋯, xN ) = 1 Λຬͨ͢ͱ͖ Λ֬͋Δ͍֬ີؔͱ͍͏ɻ q(x) ू߹ ʹ͍ͭͯɺ ͷݩͰͷू߹ ͷ֬ A ⊂ ℝN q(x) A Q(A) = ∫ A q(x)dx ͜ͷͱ͖ɺؔ ֬ͱ͍͏ɻ Q( ⋅ )
֬ม ϢʔΫϦουۭؒ ͷ্ʹϥϯμϜʹΛऔΔม Λ ʮ ʹΛऔΔ֬มʯͱ͍͏ɻ ℝN X ℝN ʮ
ͱͳΔ֬ʯ͕ Ͱ͋Δͱ͖ ʮ֬ม ͷ֬ Ͱ͋Δʯ͋Δ͍ ʮ֬ม ͷ֬ ʹै͏ʯ͋Δ͍ ʮ֬ม ͷ֬ Ͱ͋Δʯͱ͍͏ɻ X ∈ A Q(A) X q(x) X q(x) X Q
۩ମྫਅͷ αϯϓϧ ͕͋Δ֬ ʹಠཱʹै͏ ֬มͷ࣮ݱʢ؍ଌʣͩͱ͢Δɻ A = xn = {x1
, …, xn } ⊂ ℝN q(x) ͢ͳΘͪ Λ ্ͷ xn (ℝN)n q(xn) = n ∏ i=1 q(xi ) = q(x1 )q(x2 )⋯q(xn ) Λ࣋ͭ֬ม ͷ࣮ݱͰ͋Δͱߟ͑Δɻ ͜ͷͱ͖֬ ΛਅͷͱݺͿɻ Xn = (X1 , X2 , …, Xn ) q(x)
ฏۉͱࢄ
ฏۉͱࢄ ʹΛͱΔ֬ม ͷ֬Λ ͱ͢Δɻ ℝN X q(x) [f(X)] ≡ ∫
f(x)q(x)dx [f(X)] ≡ [(f(X) − [f(X)])(f(X) − [f(X)])T] = [f(X)f(X)T] − [f(X)][f(X)T] ͱఆٛ͢Δɻ ͕༩͑ΒΕͨͱ͖ɺ֬ม ͷฏۉΛ f : ℝN → ℝM f(X) ·ͨࢄڞࢄΛ ͱఆٛ͢Δɻ֬มΛ໌ه͍ͨ͠ͱ͖ ͱॻ͘ɻ X [f(X)]
۩ମྫαϯϓϧͷฏۉ αϯϓϧ Λද֬͢มΛ ͱ͢Δɻ ͦͷؔ ͕༩͑ΒΕͨͱ͖ɺͦͷฏۉΛऔΔૢ࡞ Λ xn = {x1
, …, xn } Xn = (X1 , X2 , …, Xn ) f(Xn) [ ⋅ ] ͱදه͢Δɻ ͜ͷฏۉ ΛʮαϯϓϧͷݱΕํʹର͢ΔฏۉʯͱݺͿɻ [ ⋅ ] [f(XN)] = ∫ ∫ ⋯ ∫ f(x1 , …, xn ) n ∏ i=1 q(xi )dxi
۩ମྫਅͷͷฏۉ αϯϓϧͷ֬มΛ Λ༻͍ͯɺ ਅͷ ͷਪଌΛߦͬͨޙɺਅͷͷ֬ม Λൃੜͤͯ͞ ਪଌ݁ՌͷΑ͞ΛධՁ͍ͨ͠ɻ ͜ͷ֬ม ͷؔ ʹ͍ͭͯͷฏۉΛ
Xn = (X1 , X2 , …, Xn ) q(x) X X f(X) ͱදه͢Δɻ [f(X)]X = ∫ f(x)q(x)dx
X X−1 ۭ֬ؒ(Ω = ℝM, ℬ, p) w ∈ Ω
ٯ૾X−1(A) ֬ີؔ ֬ q(x) = p(X−1(x)) Մଌۭؒ(Ω′ = ℝN, ℬ′ ) A ∈ ℬ′ X(w) = X x ∈ Ω′ ֬Q(A) = ∫ A q(x)dx f(x) ฏۉ[f(X)] ≡ ∫ f(x)q(x)dx = ∫ f(x)p(X−1(x))dx = ∫ p(w)X(w)dw = ∫ pXdw ֬ม ֬มͱ֬ɺฏۉͷؔ ۭ֬ؒ(Ω′ = ℝN, ℬ′ , q)
ಉ࣌ͱ͖݅֬
ಉ࣌ͱ͖݅ ͭͷ֬ม ͱ ͕͋Δͱ͖ɺͦͷ ͷ͕֬ Ͱ͋Δͱ͖ɺ Λಉ࣌֬ͱ͍͏ɻ X Y (X,
Y) p(x, y) p(x, y) ·ͨ֬ม ͕༩͑ΒΕͨͱ͖ͷ ͷ͖݅֬Λ࣍ͷΑ͏ ʹఆٛ͢Δɻ X Y p(y|x) = p(x, y) p(x) पล֬࣍ͷΑ͏ʹఆٛ͢Δɻ p(x) = ∫ p(x, y)dy p(y) = ∫ p(x, y)dx
ճؼؔ ֬ม ͷ֬ ʹ͍ͭͯߟ͑Δɻ ͷͱ͖ͷ ͷฏۉΛ (X, Y) p(X, Y)
X = x Y ͱॻ͘ɻ͜ͷؔΛ ͔Β ͷճؼؔ ͖݅ظ ͱ͍͏ɻ x y [Y|x] = ∫ yp(y|x)dy ؔΛ ͕༩͑ΒΕͨͱ͖ͦͷೋޡࠩΛද͢൚ؔΛ y = f(x) [(Y − f(X))2] = ∫ ∫ (y − f(x))2p(y, x)dxdy ͱॻ͘ͱ͜Ε ͷͱ͖ʹ࠷খʹͳΔɻ f(x) = [Y|x]
ΧϧόοΫɾϥΠϒϥใྔ
ΧϧόοΫɾϥΠϒϥใྔ ্ʹೋͭͷ֬ ͕͋Δͱ͖ ℝN q(x), p(x) D(p∥q) = ∫
q(x)log q(x) p(x) dx ͷ͜ͱΛΧϧόοΫɾϥΠϒϥใྔ͋Δ͍૬ରΤϯτϩϐʔͱݺͿ ΧϧόοΫɾϥΠϒϥใྔ͕࣍Γཱͭɻ ʹ͍ͭͯ Ͱ͋Δɻ ͱͳΔͷ ͷͱ͖ʹݶΔɻ ∀q(x), p(x) D(q∥p) ≥ 0 D(q∥p) = 0 q(x) = p(x)
ΧϧόοΫɾϥΠϒϥใྔ ূ໌ ͱ͓͘ͱɺ Ͱ͋Γɺ F(t) = 0 ⇔ t
= 0 F(t) = t + et − 1 (−∞ < t < ∞) ΑΓ Ͱ͋Δ͔Β͕ࣔ͞Εͨɻ ∫ q(x)dx = 1 ∫ p(x)dx = 1 ∫ log q(x) p(x) dx = 0 ·ͨɺ ͷͱ͖ɺ Ͱ Ͱ͋Δ͜ͱΛ༻͍ͯ q(x) ≈ p(x) t ≈ 0 F′ ′ (t) ≃ t2/e D(p∥q) ≃ ∫ q(x)(log q(x) − log p(x))2dx ͕Γཱͭɻ
ۃݶఆཧ
֬มͷऩଋ
֬ऩଋ ֬ม ͕ఆ ʹ֬ऩଋ͢Δͱ ʹର͠ɺ ʹ͓͍ͯ {Xn }n∈ℕ c ∀ϵ,
∀δ > 0 ∃N ∈ ℕ n > N ⇒ P(∥Xn − c∥ > ϵ) < δ ⇔ P(∥Xn − c∥ < ϵ) = 1 ͱͳΔ͜ͱͰ͋Δɻ ͜Εେͷऑ๏ଇʹରԠ͍ͯ͠Δɻ Xn c ϵ ඪຊ͕ेʹେ͖͍ͱ͖ɺඪຊฏۉฏۉʹऩଋ͢Δ
๏ଇ ऩଋ ֬มͷྻ ͕֬ม ʹ๏ଇ ऩଋ͢Δͱ ͷ͕֬ Ͱ
ͷ͕֬ Ͱ͋Δͱ͖ɺ ҙͷ༗ք͔ͭ࿈ଓͳؔ ʹରͯ͠ {Xn }n∈ℕ X Xn qn (x) X q(x) F(x) lim n→∞ ∫ F(x)qn (x)dx = ∫ F(x)q(x)dx ⇔ lim n→∞ [F(Xn )] = [F(X)] ͕Γཱͭ͜ͱͰ͋Δɻ͜Εத৺ۃݶఆཧʹରԠ͍ͯ͠Δɻ ඪຊ͕ेʹେ͖͍ͱ͖ɺूஂͷʹؔΘΒͣඪຊฏۉͱฏۉͷࠩਖ਼نʹै͏
ܦݧաఔ
ϢʔΫϦουۭؒʹ͓͚ΔίϯύΫτੑ ϢʔΫϦουۭؒ ͷ෦ू߹ ͕։ू߹ͷ ʹ ͍ͭͯ ͳΒɺͦͷ༗ݶݸͷ։ू߹ Ͱ ℝN W
= {O}λ∈Λ W ⊂ ⋃ λ∈Λ Oλ O1 , …, On ∈ ͱͳΔͷ͕͋Δͱ͖ɺ ίϯύΫτͰ͋Δͱ͍͏ W ⊂ O1 ∪ … ∪ On W O1 , …, On ∈ W
্ۭؔؒͷେͷ๏ଇ ϢʔΫϦουۭؒ ʹΛऔΔ ͕֬ม ͱ ಉ֬͡ʹै͏ͱ͢Δɻ ύϥϝʔλͷू߹ ΛίϯύΫτͱ͢Δɻ ℝN X1
, X2 , …, Xn X w ∈ W ∈ ℝN f(x, w) : ℝN → ℝ1 X [ sup w∈W |f(X, w)|] < ∞, X [ sup w∈W |∇w f(X, w)|] < ∞ ݅ ͕ΓཱͭͱԾఆ͢Δɻ͜ͷͱ͖ɺ ʹ͍ͭͯ ∀ϵ > 0 P( sup w∈W 1 n n ∑ i=1 f(Xi , w) − X [f(X, w)] < ϵ) = 1 ͜ͷ͜ͱΛ্ۭؔؒͷେͷ๏ଇͱ͍͏
ਖ਼ن֬աఔ ू߹ ্ͷؔͰ֬తʹมಈ͢Δͷ ͕ɺ ฏۉؔ ͱ૬ؔؔ Λ࣋ͭਖ਼ن֬աఔͰ͋Δͱɺ ֤ ͝ͱʹ ͕ਖ਼نʹै͏֬มͰ͋Γɺ
W ξ(w) m(w) ρ(w, w′ ) w ξ(w) m(w) = ξ [ξ(w)], ρ(w, w′ ) = ξ [ξ(w)ξ(w′ )] ͕Γཱͭ͜ͱͰ͋Δɻ͜͜Ͱ ɺ֬աఔ ʹ͍ͭͯͷฏۉΛ ද͍ͯ͠ΔɻίϯύΫτू߹্Ͱͷਖ਼ن֬աఔɺ ξ [ ⋅ ] ξ ฏۉؔͱ૬͕ܾؔؔ·ΔͱҰҙʹఆ·Δ͜ͱ͕ΒΕ͍ͯΔɻ
ܦݧաఔ ͭ͗ʹ X[ sup w∈W |f(X, w) − X
[f(X, w)]|α ] < ∞ X[ sup w∈W |∇w (f(X, w) − X [f(X, w)])|α ] < ∞ ͕ ͰΓཱͭͱԾఆ͢Δɻ α = 2 Yn (w) = 1 n n ∑ i=1 (f(Xi , w) − X [f(X, w)]) ͜ͷ֬աఔ Λܦݧաఔͱ͍͏ɻ Yn (w)
ܦݧաఔ ֬աఔ ܦݧաఔ ฏۉ͕ Ͱ૬͕ؔؔ Yn (w) 0
ͷਖ਼ن֬աఔ ʹ๏ଇऩଋ͢Δɻ Y(w) ρ(w, w′ ) = X [f(X, w)f(X, w′ )] − X [f(X, w)]X [f(X, w′ )]
֬աఔͷ๏ଇऩଋ ֬աఔ ܦݧաఔ ͕֬աఔ ʹ๏ଇऩଋ͢Δͱɺ ༗ք࿈ଓͳ൚ؔ ʹ͍ͭͯ Yn (w)
Y(w) F( ⋅ ) ͕Γཱͭͱ͍͏͜ͱͰ͋Δɻͳ͓ɺ൚ؔ ͕࿈ଓͰ͋Δͱ F( ⋅ ) lim n→∞ [F(Yn )] = Y [F(Y)] lim n→∞ sup w∈W |fn (w) − f(w)| → 0 ⇒ lim n→∞ F(fn ) = F(f ) ͕Γཱͭ͜ͱͰ͋Δɻ ͜ͷΑ͏ͳܗͷఆཧΛ্ۭؔؒͷத৺ۃݶఆཧͱ͍͏ɻ
ࢀߟࢿྉ w ֬ೖ ล w ܦݧաఔͱ ล w ϕΠζ౷ܭͷཧͱํ๏ ล
w ଌɾ֬ɾϧϕʔάੵ ݪܒհ