Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML Ops Study 2
Search
ARIYAMA Keiji
May 29, 2018
Technology
0
140
ML Ops Study 2
5月29日にクックパッド株式会社で開催されたML Ops Study #2の発表資料です。
ARIYAMA Keiji
May 29, 2018
Tweet
Share
More Decks by ARIYAMA Keiji
See All by ARIYAMA Keiji
Build with AI
keiji
0
220
DroidKaigi 2023
keiji
0
1.9k
TechFeed Conference 2022
keiji
0
290
Android Bazaar and Conference Diverse 2021 Winter
keiji
0
880
ci-cd-conference-2021
keiji
1
1.2k
Android Bazaar and Conference 2021 Spring
keiji
3
820
TFUG KANSAI 20190928
keiji
0
130
Softpia Japan Seminar 20190724
keiji
1
180
pixiv App Night 20190611
keiji
1
600
Other Decks in Technology
See All in Technology
Oracle Base Database Service 技術詳細
oracle4engineer
PRO
14
82k
CLIPでマルチモーダル画像検索 →とても良い
wm3
0
490
AIの個性を理解し、指揮する
shoota
2
410
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
330
様々なファイルシステム
sat
PRO
0
260
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
170
生成AI時代のPythonセキュリティとガバナンス
abenben
0
150
頭部ふわふわ浄酔器
uyupun
0
230
組織全員で向き合うAI Readyなデータ利活用
gappy50
4
1.4k
SRE × マネジメントレイヤーが挑戦した組織・会社のオブザーバビリティ改革 ― ビジネス価値と信頼性を両立するリアルな挑戦
coconala_engineer
0
290
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
170
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
110
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Thoughts on Productivity
jonyablonski
71
4.9k
Leading Effective Engineering Teams in the AI Era
addyosmani
7
650
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Embracing the Ebb and Flow
colly
88
4.9k
Scaling GitHub
holman
463
140k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
How GitHub (no longer) Works
holman
315
140k
A designer walks into a library…
pauljervisheath
209
24k
Transcript
C-LIS CO., LTD.
.-0QT4UVEZ BUΫοΫύουגࣜձࣾ 5FOTPS'MPXͷ܇࿅ࡁΈϞσϧΛ "OESPJEΞϓϦʹࡌͤΔͱ͖ʹ ۤ࿑ͨ͠ 5FOTPS'MPXͰझຯͷը૾ऩूαʔόʔΛ࡞Δ݄߸
C-LIS CO., LTD. ༗ࢁܓೋʢ,FJKJ"3*:"."ʣ $-*4$0 -5% Photo :
Koji MORIGUCHI (MORIGCHOWDER) "OESPJEΞϓϦ։ൃνϣοτσΩϧ ػցֶशͪΐͬͱͬͨ͜ͱ͋Γ·͢
C-LIS CO., LTD.
C-LIS CO., LTD. ͬ
ຊ൪ڥͷೖܦݧ͕ඞཁͳΒ ೖͯ͠͠·͍͍͑͡Όͳ͍
؟ ڸ ͬ ່ ࠜઇΕ͍
Έͷ؟ڸ່ͬը૾Λ ࣗಈͰऩू͍ͨ͠
̎Ϋϥεྨ 1 0
ݱࡏͷγεςϜ
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
σʔληοτཧαʔόʔ $16"UISPO/FP()[ .FNPSZ(# 4UPSBHF44%(# )%%5# 3"*%
σʔληοτཧαʔόʔͷׂ ը૾σʔλͷऩू ϝλσʔλʢΞϊςʔγϣϯɾϥϕϧʣͷཧ "1*ͷఏڙ ֶश༻σʔλʢ5'3FDPSEʣͷੜ
ը૾σʔλͷऩू
ϝλσʔλͷཧ
ϝλσʔλͷཧ label: 2 left: 283 top: 190 right:
435 bottom:301 = 1.0
ϥϕϧͷछྨ PSJHJOBM@BSU OTGX GBWPSJUF QIPUP JMMVTU DPNJD GBDF
GFNBMF NFHBOF TDISPPM@VOJGPSN CMB[FS@VOJGPSN TBJMPS@VOJGPSN HM LFNPOP NBMF CM DBU EPH GPPE EJTMJLF
"1*ͷఏڙ ը૾Ϧετͷऔಘ ը૾ͷऔಘ ը૾ͷݕࡧʢϥϕϧʣ ϥϕϧͷઃఆ ϥϕϧະઃఆը૾ͷϦετΛऔಘ σʔλऔಘݩ5XJUUFS*%ͷՃɾআ
ֶश༻σʔλͷੜ 5'3FDPSEܗࣜPS+1&( $47ܗࣜ ը૾ͷϦαΠζ͜ͷஈ֊Ͱߦ͏ʢτϥϑΟοΫΛݮ $ python ./create_dataset.py \
--base_dir /dataset/source/ \ --output_dir ~/tfrecords_classifier \ --image_size 256 \ --tag_names megane,nsfw,favorite,illust
σʔλͷάϧʔϓԽ 0 1 2 3 4 5 6
7 8 9 σʔληοτ ςετσʔληοτ
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
ֶश༻αʔόʔ
{ "tag_name": "megane", "train_catalog_numbers": "0,1,2,3,4,5,6,7,8", "eval_catalog_numbers": "9", "data_augmentation": { "random_crop":
false, "random_colorize": true } } ֶश༻ͷઃఆϑΝΠϧ
ֶशͱݕূͷ࣮ߦ $ CUDA_VISIBLE_DEVICES=0,1 python ./train.py \ --learning_config config_megane.json
\ --tfrecords_dir ~/tfrecords_classifier \ --train_dir ~/train_single_discriminator \ --summary_dir ~/summary_single_discriminator \ --batch_size 64 \ --learning_rate 0.0001 \ --num_gpus 2 \ --max_step 100000 $ CUDA_VISIBLE_DEVICES=2 python ./eval.py \ --learning_config config_megane.json \ --tfrecords_dir ~/tfrecords_classifier \ --train_dir ~/train_single_discriminator \ --summary_dir ~/summary_single_discriminator $ tensorboard \ --logdir ~/summary_single_discriminator/megane/
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
ධՁ༻αʔόʔ
ධՁͷ࣮ߦ $ python3 client.py \ --tag_name megane \
--train_base_path ~/train_single_discriminator \ --train_file_name precision-0.956463/megane.ckpt-294000 \ --batch_size 16 \ --limit_batch 100
ධՁ༻ αʔόʔ ܇࿅ɾֶश༻αʔόʔ σʔληοτసૹ ʢTFRecordʣ ֶशࡁΈ ύϥϝʔλʔऔಘ ը૾औಘ
ը૾औಘ ϥϕϧ ͚ σʔληοτཧ αʔόʔ σʔλऩूݩ αʔϏε ը૾औಘ ϥϕϧ ͚ Android ΞϓϦ
"OESPJEΞϓϦ
ۙͷ՝
ෆదը૾͕ଟ͗͢Δ
ෆదʢ/4'8ʣը૾ͱ؟ڸը૾ /4'8 positive: 36,083 → 7.17% negative:
466,738 ؟ڸ positive: 23,559 → 2.44% negative: 938,563
ෆదը૾ϑΟϧλʔΛ ΞϓϦʹΈࠐΉ
NPEFM NSFW positive: 5,628 negative: 17,253
NPEFM ֶशࡁΈύϥϝʔλʔϑΝΠϧ ֶशࡁΈϞσϧ .pb 170MB
NPEFM@MJUF ֶशࡁΈύϥϝʔλʔϑΝΠϧ ֶशࡁΈϞσϧ .pb 10.7MB
NPEFM@MJUF
Ϟσϧͷߏ .pb input result 128x128x3 1
private val IMAGE_WIDTH = 128 private val IMAGE_HEIGHT = 128
private val IMAGE_CHANNEL = 3 private val IMAGE_BYTES_LENGTH = IMAGE_WIDTH * IMAGE_HEIGHT * IMAGE_CHANNEL val imageByteBuffer: ByteBuffer = ByteBuffer.allocate(IMAGE_BYTES_LENGTH) val scaledBitmap = Bitmap.createScaledBitmap(bitmap, IMAGE_WIDTH, IMAGE_HEIGHT, false) scaledBitmap.copyPixelsToBuffer(imageByteBuffer) ը૾ΛόοϑΝʹ֨ೲ
val resultArray = FloatArray(1) fun recognize(imageByteArray: ByteArray): Float { val
start = Debug.threadCpuTimeNanos() tfInference.feed("input", imageByteArray, imageByteArray.size.toLong()) tfInference.run(arrayOf("result")) tfInference.fetch("result", resultArray) val elapsed = Debug.threadCpuTimeNanos() - start Log.d(TAG, "Elapsed: %d ns".format(elapsed)) return resultArray[0] } GFFESVOGFUDI
private val IMAGE_WIDTH = 128 private val IMAGE_HEIGHT = 128
private val IMAGE_CHANNEL = 3 private val IMAGE_BYTES_LENGTH = IMAGE_WIDTH * IMAGE_HEIGHT * IMAGE_CHANNEL val imageByteBuffer: ByteBuffer = ByteBuffer.allocate(IMAGE_BYTES_LENGTH) val scaledBitmap = Bitmap.createScaledBitmap(bitmap, IMAGE_WIDTH, IMAGE_HEIGHT, false) scaledBitmap.copyPixelsToBuffer(imageByteBuffer) scaledBitmap.recycle() ݪҼΒ͖͠ͷ ˢ"MQIBνϟϯωϧ͕ೖ͍ͬͯΔ
Ϟσϧͷߏ .pb input result 128x128x4 1
with tf.Graph().as_default() as g: image_ph = tf.placeholder( tf.uint8, [model.IMAGE_SIZE *
model.IMAGE_SIZE * 4], name='input') image = tf.cast(image_ph, tf.float32) image = tf.reshape( image, [model.IMAGE_SIZE, model.IMAGE_SIZE, 4]) image = image[:, :, :3] QCग़ྗ࣌ʹDIΛड͚ೖΕΔΑ͏ʹάϥϑΛมߋ
σϞ
'PPE(BMMFSZ https://github.com/keiji/food_gallery_with_tensorflow ΪϟϥϦʔʹอଘ͞Ε͍ͯΔ৯ͷը૾Λදࣔ http://techlife.cookpad.com/entry/2017/09/14/161756 ΫοΫύου։ൃऀϒϩά ྉཧ͖Ζ͘ʹ͓͚ΔྉཧʗඇྉཧผϞσϧͷৄࡉ
ΈࠐΜͰΈ͚ͨΕͲɺ ਫ਼͋·Γߴ͘ͳ͍ʜʜ
ࠓޙͷ՝ 5FOTPS'MPX-JUFͷҠߦ ߴਫ਼ͷϞσϧͷѹॖʢল༰ྔԽʣ 1SVOJOH 2VBOUJ[BUJPO %JTUJMMBUJPO ML Kit:
Machine Learning SDK for mobile developers (Google I/O '18) https://youtu.be/Z-dqGRSsaBs?t=32m10s
ࠓޙͷ՝ ֶशαΠΫϧΛࣗಈԽ͍͖͍ͯͨ͠ɻ ʢఆظతʹֶशσʔλͷੜͱసૹΛߦ͍ɺ࠶ֶश͢ΔͳͲʣ σʔλϕʔεͷߴԽ ɹϥϕϧݕࡧ͕ඇৗʹ͍ͷ͕՝ɻઃܭΛݟ͢ඞཁ͋Γ ɹݕࡧΠϯσοΫεͷ(PPHMF$MPVE4UPSFҠߦΛݕ౼
ࠓޙͷ՝ σʔληοτཧαʔόʔͷߋ৽ 5FOTPS'MPXΑΓɺ$16ʹ*OUFM"79͕ඞਢʹͳͬͨʢQJQ൛ʣ
C-LIS CO., LTD. ຊࢿྉɺ༗ݶձࣾγʔϦεͷஶ࡞Ͱ͢ɻຊࢿྉͷશ෦ɺ·ͨҰ෦ʹ͍ͭͯɺஶ࡞ऀ͔ΒจॻʹΑΔڐΛಘͣʹෳ͢Δ͜ͱې͡ΒΕ͍ͯ·͢ɻ 5IF"OESPJE4UVEJPJDPOJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF ໊֤ɾϒϥϯυ໊ɺձ໊ࣾͳͲɺҰൠʹ֤ࣾͷඪ·ͨొඪͰ͢ɻຊࢿྉதͰɺɺɺäΛׂѪ͍ͯ͠·͢ɻ 5IF"OESPJESPCPUJTSFQSPEVDFEPSNPEJpFEGSPNXPSLDSFBUFEBOETIBSFECZ(PPHMFBOEVTFEBDDPSEJOHUPUFSNTEFTDSJCFEJOUIF$SFBUJWF$PNNPOT"UUSJCVUJPO-JDFOTF