Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
広告配信サーバーと広告配信比率最適化問題
Search
Ken Wagatsuma
February 10, 2018
Technology
1
1k
広告配信サーバーと広告配信比率最適化問題
Lightening Talk at
https://techconf.cookpad.com/2018/
Ken Wagatsuma
February 10, 2018
Tweet
Share
More Decks by Ken Wagatsuma
See All by Ken Wagatsuma
Pregel Graph Compute Engines - Supersteps Exampls
kenju
0
230
Kafka on Kubernetes with Strimzi
kenju
0
180
AWS DynamoDB Accelerator (DAX) 101
kenju
2
7.3k
Moden browser introduction
kenju
1
440
Cookpad summer internship 2019 - API
kenju
0
10k
Introduction to Design Patterns
kenju
0
100
GraphQL Asia 2019 "Re-architecture of a decade-old app with BFF/GraphQL"
kenju
0
9.1k
Introduction to TypeScript
kenju
0
750
Introduction to Programmatic Ad
kenju
0
270
Other Decks in Technology
See All in Technology
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
230
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
130
[2025-12-12]あの日僕が見た胡蝶の夢 〜人の夢は終わらねェ AIによるパフォーマンスチューニングのすゝめ〜
tosite
0
170
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
1
400
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
130
Claude Codeを使った情報整理術
knishioka
5
2.2k
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
200
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
360
Authlete で実装する MCP OAuth 認可サーバー #CIMD の実装を添えて
watahani
0
170
NIKKEI Tech Talk #41: セキュア・バイ・デザインからクラウド管理を考える
sekido
PRO
0
210
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
170
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
240
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
410
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
63
How Software Deployment tools have changed in the past 20 years
geshan
0
30k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
29
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Un-Boring Meetings
codingconduct
0
160
Google's AI Overviews - The New Search
badams
0
870
Context Engineering - Making Every Token Count
addyosmani
9
550
Transcript
ࠂ৴αʔόʔͱ ࠂ৴ൺ࠷దԽ ϝσΟΞϓϩμΫτ։ൃ෦ ,FOKV8BHBUTVNB
8IP Kenju Wagatsuma (github.com/kenju) • ϝσΟΞϓϩμΫτ։ൃ෦ • αʔόʔαΠυΤϯδχΞ • ͖ͳͷɿRuby,
ίʔώʔ, ϩδΧϧΫοΩϯά • ݏ͍ͳͷɿ1ϲ݄લʹॻ͍ͨࣗͷίʔυ
ϝσΟΞϓϩμΫτ։ൃ෦ ୲αʔϏεɿ ࠂ৴, storeTV, cookpadTV, OEM, ͦͷଞଟ ࢀߟɿ ։ൃऀϒϩάʰΫοΫύουͷࠂΤϯδχΞԿΛ ͍ͬͯΔͷ͔ʱ
ຊ͍ͨ͜͠ͱɻ ϝσΟΞϓϩμΫτ։ൃ෦Ͱ ͲΜͳϓϩδΣΫτΛ͍ͬͯΔͷ͔ʁ
νʔϜʹೖͬͯϲ݄ޙʹऔΓΜͩϓϩδΣΫτ ΫοΫύουͷࠂ৴αʔόʔʹ͓͚Δ ࠂ৴ൺͷࣗಈ࠷దԽϓϩδΣΫτɻ
ݫ͍͠εέδϡʔϧ • ϝσΟΞϓϩμΫτ։ൃ෦δϣΠϯ - 10݄த० • ͓खฒΈഈݟϓϩδΣΫτ - ~11݄த० •
৴࠷దԽτϥΠΞϧ - 12/4(݄) 10:00 - 12/11(݄) 10:00 ???
ղܾ͍ͨ͠՝ • ʑͷखӡ༻ʹΑΔνϡʔχϯά͕ඞཁ - => ࡞ۀ͕ൃੜ • ӡ༻ऀͷܦݧͱצʹཔͬͨνϡʔχϯά - =>
ҟಈ࣌ಋೖ࣌ͷίετ͕ߴա͗ • ࠷దͳࡏݿൺΛࣗಈͰௐͰ͖ͳ͍ - => ࠂܝग़ͷػձଛࣦ
Ͳ͏ղܾ͢Δ͔ • ࡏݿׂྔͱ࣮͔Β࠷దͳ৴ൺͷิ ਖ਼Λߦ͏ - ΠϯϓϨογϣϯϕʔε͔ΒΫϦοΫϕʔεͷ৴ - ΫϦοΫ༧ଌΛར༻ͨ͠ൺͷࣗಈ࠷దԽ - ϦΞϧλΠϜूܭσʔλΛ׆༻ͨ͠ΞʔΩςΫνϟ
‣ Lambda Architecture ʹ͓͚Δ Speed Layer
l4QFFE-BZFSzPO"84 • Kinesis, DynamoDB, Lambda Λ׆༻ͨ͠ Speed Layer (from Lambda
Architecture) • طଘͷετϦʔϜʹɺΫ ϦοΫܭࢉϨΠϠʔΛ Ճ͚ͨͩ͠ = ઌਓͷݞ ʹΔ
ৄ͍ͪ͜͠Β ࢀߟɿ ʰCookpad Tech Kitchen #9 ʙ1ߦͷϩάͷ͜͏ ଆʙ Λ։࠵͠·ͨ͠ʂʱ
ΫϦοΫ༧ଌ͍͠ʂʂʂ • ޯϒʔεςΟϯάܾఆʢGBDTʣΛ༻͍ͨࠂ͝ͱͷΫϦοΫ༧ଌ - Facebook https://code.facebook.com/posts/975025089299409/evaluating-boosted-decision-trees-for-billions-of-users - SmartNews https://speakerdeck.com/komiya_atsushi/gbdt-niyorukuritukulu-yu-ce-wogao-su-hua-sitai-number-oresikanaito-vol-dot-4 •
ଟόϯσΟοτͷҰछͰ͋ΔMortal Multi-Armed BanditsͷԠ༻ - Voyage Group http://techlog.voyagegroup.com/entry/2015/04/03/114547ɹ • Neural Networkͷ૯߹֨ಆٕʢ͕͢͞Googleʣ - Google http://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdfɹ • ৴པͱ࣮ͷϩδεςΟοΫճؼʢୠܻ͕͠ԯϨϕϧʣ - Criteo http://olivier.chapelle.cc/pub/ngdstone.pdfɹ
ؒʹ߹Θͳ͍ʂ • τϥΠΞϧͳΜͱͯ͠ʹ࣮ࢪ͍ͨ͠ - վળͷαΠΫϧΛճͨ͢Ί • QCDͰݴ͏ͳΒɺDelivery, QualityΛ༏ઌ - ͳΜͱͯؒ͠ʹ߹Θ͍ͤͨʂ
• ࠷ॳ͔Βᘳͳਫ਼༧ଌ·ͣෆՄೳ - ػցֶशͰղܾ͠ͳͯ͘Α͍͔·ͣߟ͑Δ - ࢀߟɿʰࣄͰ͡ΊΔػցֶशʱ
ҠಈฏۉԞ͕ਂ͍ • SMA (Simple Moving Average) = ۙ N ݸͷॏΈ͚ͷͳ͍୯७ͳฏۉ
• WMA (Weighted Moving Average) = ΑΓ࠷ۙͷσʔλʹॏΈ͚ • EWMA (Exponentially Weighted Moving Average) = ࢦؔతʹॏΈ͚ • MMA (Modified Moving Average) = EWMAͷѥछ ଞʹTriangle MA, Sine Weighted MA, KZ Filtering,...etc ࢀߟɿhttps://en.wikipedia.org/wiki/Moving_average#Simple_moving_averag
աڈϩάΛݩʹΞϧΰϦζϜͷਫ਼Λੳ • Jupyter Notebook / Python - ࢀߟɿ։ൃऀϒϩάʰRailsΤϯ δχΞʹཱͭJupyter Notebook
ͱiRubyʱ • ൺֱͨ͠ΞϧΰϦζϜ - Total Average - Cumulative Average - Simple Moving Average (3 Hours) - Simple Moving Average (6 Hours)
τϥΠΞϧ݁Ռ • ิਖ਼ͷϩδοΫʹ՝ ͕ݟ͔ͭͬͨ ͷɺτϥΠΞϧͱ͠ ͯޭ
ظతνϡʔχϯά • Speed Layer ͷ࠶ઃܭɾຏ͖ࠐΈ - ετϦʔϜॲཧʹԊͬͨσʔλͷྲྀΕ • ෛ࠴ =
ະୡ ΛՃຯͨ͠ϩδοΫ - ୈҰ࣍τϥΠΞϧΛ͍ͬͯͳ͔ͬͨΒݟ͑ͳ͔ͬͨ՝ • ҠಈฏۉΞϧΰϦζϜͷվળ - Batch LayerͰΦϑϥΠϯͰܭࢉ&࠷ਫ਼͕ྑ͍ͷΛબ - Gem࡞ͬͨ https://github.com/kenju/moving_avg-ruby
தظͰ͍͖ͬͯ • ΫϦοΫ༧ଌਫ਼ͷߋͳΔ্ˍ৽نࠂ։ൃ - ػցֶशϨΠϠʔͷຊ൪ಋೖ • Lambda Architectureͷຏ͖ࠐΈ - ࢀߟɿ։ൃऀϒϩάʰαʔόʔϨεͳόοΫΞοϓγεςϜ
Λ AWS SAM Λ༻͍ͯγϡοͱߏங͢Δʱ • ࠂ৴αʔόʔࣗମͷѹతվળ - ։ൃج൫ͷڥඋ - ύϑΥʔϚϯε࠷దԽɺϨΨγʔίʔυͷվળ
ຖͷྉཧΛָ͠Έʹ͢Δ 5IBOLZPV