Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Bayesian statistics Tokyo.R#94
Search
kilometer
September 11, 2021
Science
5
2.3k
Bayesian statistics Tokyo.R#94
第94回Tokyo.Rでトークした際のスライド資料です。
kilometer
September 11, 2021
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
830
TokyoR109.pdf
kilometer
1
440
TokyoR#108_NestedDataHandling
kilometer
0
750
TokyoR#107_R_GeoData
kilometer
0
390
SappoRo.R_roundrobin
kilometer
0
120
TokyoR#104_DataProcessing
kilometer
1
660
TokyoR#103_DataProcessing
kilometer
0
850
TokyoR#102_RMarkdown
kilometer
1
610
TokyoR#101_RegressionAnalysis
kilometer
0
350
Other Decks in Science
See All in Science
ultraArmをモニター提供してもらった話
miura55
0
190
化学におけるAI・シミュレーション活用のトレンドと 汎用原子レベルシミュレーター: Matlantisを使った素材開発
matlantis
0
260
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
190
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
160
プロダクト開発を通して学んだナレッジマネジメントの哲学
sonod
0
150
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
740
Machine Learning for Materials (Lecture 9)
aronwalsh
0
210
【人工衛星開発】能見研究室紹介動画
02hattori11sat03
0
150
ABEMAの効果検証事例〜効果の異質性を考える〜
s1ok69oo
4
2.1k
Celebrate UTIG: Staff and Student Awards 2024
utig
0
460
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
570
WCS-LA-2024
lcolladotor
0
120
Featured
See All Featured
Statistics for Hackers
jakevdp
796
220k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Bash Introduction
62gerente
608
210k
Side Projects
sachag
452
42k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Six Lessons from altMBA
skipperchong
27
3.5k
Rails Girls Zürich Keynote
gr2m
94
13k
Scaling GitHub
holman
458
140k
Transcript
#94 @kilometer00 2021.09.11 BeginneR Session -- Bayesian statistics --
Who!? Who?
Who!? ・ @kilometer ・Postdoc Researcher (Ph.D. Eng.) ・Neuroscience ・Computational Behavior
・Functional brain imaging ・R: ~ 10 years
宣伝!!(書籍の翻訳に参加しました。) 絶賛販売中!
宣伝!!(筆頭論⽂が出版されました!!)
BeginneR Session
-FU`TTUBSU3 ɾ'SFF ɾ -PXJOTUBMMBUJPODPTUGPSCBTJDFOWJSPONFOU ɾ'VMMSBOHFPGGVODUJPOTGPSEBUBTDJFODF ɾ.BOZFYUFOTJPOT QBDLBHFT ɾ4USPOHDPNNVOJUZˡ QPTJUJPOUBML
-FU`TTUBSU3 ɾ'SFF ɾ -PXJOTUBMMBUJPODPTUGPSCBTJDFOWJSPONFOU ɾ'VMMSBOHFPGGVODUJPOTGPSEBUBTDJFODF ɾ.BOZFYUFOTJPOT QBDLBHFT ɾ4USPOHDPNNVOJUZˡ QPTJUJPOUBML https://tokyor.connpass.com/
-FU`TTUBSU3 ɾ'SFF ɾ -PXJOTUBMMBUJPODPTUGPSCBTJDFOWJSPONFOU ɾ'VMMSBOHFPGGVODUJPOTGPSEBUBTDJFODF ɾ.BOZFYUFOTJPOT QBDLBHFT ɾ4USPOHDPNNVOJUZˡ QPTJUJPOUBML h0ps://tokyor.connpass.com/
SXBLBMBOH TMBDLXPSLTQBDF .FNCFSਓ
3Λ࢝ΊΑ͏ 【Step】 1. Install R 2. Install RStudio
*OTUBMM3 ☝
*OTUBMM34UVEJP ౷߹։ൃڥ JOUFHSBUFEEFWFMPQNFOUFOWJSPONFOU *%& ☝
☝ *OTUBMM34UVEJP ౷߹։ൃڥ JOUFHSBUFEEFWFMPQNFOUFOWJSPONFOU *%&
)PXUPVTF34UVEJP 4DSJQUFEJUPS $POTPMF &OWJSPONFOU QMPU FUD 1 write 2 select
3 run(⌘ + ↩) output
)PXUPVTF34UVEJP
)PXUPVTF34UVEJP
> x + y
[1] 3 4DSJQUFEJUPS $POTPMFPVUQVU )PXUPVTF34UVEJP
> x +
y [1] 4 ಉ͡ม໊ʹೖ͢Δͱ্ॻ͖͞ΕΔ DPNNFOUPVU 4DSJQUFEJUPS $POTPMFPVUQVU )PXUPVTF34UVEJP
QBDLBHFT $3"/ 5IF$PNQSFIFOTJWF3"SDIJWF/FUXPSL 0GGJDJBM3QBDLBHFSFQPTJUPSZ h0ps://cran.r-project.org/ 2021.09.04
$dyverse: データサイエンス関連パッケージ群をまとめたパッケージ ・dplyr: テーブルデータの加⼯・集計 ・ggplot2:
グラフの描画 ・stringr: ⽂字列加⼯ ・$dyr: データの整形や変形 ・purrrr: 関数型プログラミング⽤ ・magri7r: パイプ演算⼦%>%を提供 *OTUBMMQBDLBHFGSPN$3"/ QBDLBHFT $3"/ 5IF$PNQSFIFOTJWF3"SDIJWF/FUXPSL 0⒏DJBM3QBDLBHFSFQPTJUPSZ https://cran.r-project.org/
0367*22(4*,1*/.6&41/6 ) $70-98.56.$' 20+5*59&4*,1*/. ) $70-98.56.$' 20+5*59&70-98.56.'###%# !" "UUBDIUIFQBDLBHF QBDLBHFT
$3"/ 5IF$PNQSFIFOTJWF3"SDIJWF/FUXPSL 0GGJDJBM3QBDLBHFSFQPTJUPSZ h0ps://cran.r-project.org/ *OTUBMMQBDLBHFGSPN$3"/
Stan A state-of-the-art platform for statistical modeling R A free
so4ware environment for sta7s7cal compu7ng and graphics. {rstan} package A pla:orm using stan from R
None
BeginneR
Before After BeginneR Session BeginneR BeginneR
BeginneR Advanced Hoxo_m If I have seen further it is
by standing on the shoulders of Giants. -- Sir Isaac Newton, 1676
#94 @kilometer00 BeginneR Session -- Bayesian statistics --
Experiment hypothesis observation principle phenotype model data Truth Knowledge f
X (unknown)
“Hypothesis driven” “Data driven” Experimental design A B Front Back
Right Left VerAcal Up A B
Strong hypothesis obs. principle phenotype f Weak hypothesis obs. principle
phenotype model Complex data f model Simple data “Hypothesis driven” “Data driven” Experimental design X X
Strong hypothesis obs. principle phenotype f X Weak hypothesis obs.
principle phenotype model Complex data f X model Simple data “Hypothesis driven” “Data driven” Experimental design ここが気になる(気になりだす)
Hypothesis ObservaEon Truth Knowledge principle phenotype model data Dice with
α faces (regular polyhedron) ! = 5 ?
Dice with α faces ! = 5 $ % =
! α = 4 = 0 $ % = ! α = 6 = 1 6 $ % = ! α = 8 = 1 8 $ % = ! α = 12 = 1 12 $ % = ! α = 20 = 1 20 likelihood maximum likelihood
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $ % = ! α = 4 = 0 $ % = ! α = 6 = 1 6!" $ % = ! α = 8 = 1 8!" $ % = ! α = 12 = 1 12!" $ % = ! α = 20 = 1 20!" likelihood maximum likelihood
Could you find α ?
Yes, yes, yes. αis 6!! Why do you think so? Because, arg max! - . α = 6 !! Hmmm......, so......, how about ? $(α = 6) Oh, it is " #!"!! ......nnNNNNO!!! WHAT!!????
Hmmm......, so, how about
? $(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood ! α = 6 % = & !!??
Probability distribution $(% = !) ! % $(% = !|α
= 6) #(% = '|α) parameter data
Probability distribution $(%) ! % arg max! -(2|α) 1 6!"
α = 6 α = 8 α = 12 $(4) α 4 -(5 = α|2 = .) ! = # α = 20
Probability distribuEon $#(%) ! % arg max! -$ (2|α) 1
6!" $$(4) α 4 -! (5 = α|2 = .) ! = # α = 6 α = 8 α = 12 α = 20
Probability distribuEon $#(%) ! % arg max! -$ (2|α) 1
6!" $$(4) α 4 -! (5 = α|2 = .) ! = # ' 5 : α → & ' 6 : & → α α = 6 α = 8 α = 12 α = 20
CondiEonal probability "($) "(&) " $ ∩ & = "(&
∩ $)
CondiEonal probability "($) "(&) "! $ ∩ & = ""
(& ∩ $)
CondiEonal probability "($) "(&) ! 7 * ∗ ! 8
, * = ! 7 *|, ∗ ! 8 ,
Bayes’ theorem ! 7 *|, = ! 8 , *
∗ ! 7 (*) ! 8 , "! $ ∩ & = "" (& ∩ $) ! 7 * ∗ ! 8 , * = ! 7 *|, ∗ ! 8 ,
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! ) = α|+ = ! = $" + = ! ) = α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α Bayes’ theorem
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! ) = α|+ = ! = $" + = ! ) = α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! α|! = $" ! α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! α|! = $" ! α ∗ $! () = α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ 4 = α|1 = $$ 4 = α|% = 9 %: 9 → ! sample space
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ 4 = α|1 = $$ 4 = α|% = 9 %: 9 → ! sample space $# % = ! = $# % = !|1 = $# % = !|4 = < 4: < → α sample space
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ 4 = α|% = 9 $# % = ! = $# % = !|4 = < = = ∀$ $# % = !|4 = α ∗ $$ 4 = α|% = 9 marginaliza7on α ∈ {4, 6, 8, 12, 20}
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood = = ∀$ $# !|α ∗ $$ α|9 marginalization α ∈ {4, 6, 8, 12, 20} $$ 4 = α = $$ α|9 $# % = ! = $# !|<
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood = = ∀$ $# !|α ∗ $$ α|9 marginaliza7on α ∈ {4, 6, 8, 12, 20} likelihood $$ 4 = α = $$ α|9 $# % = ! = $# !|<
$! α|! = $" ! α ∗ $! () =
α) $" + = ! ' 5 : α → & ' 6 : & → α likelihood $$ 4 = α = $$ α|9 $# % = ! = $# !|< = = ∀$ $# !|α ∗ $$ α|9 marginalization α ∈ {4, 6, 8, 12, 20} likelihood
$! α|! = $" ! α ∗ $! (α) $"
! ' 5 : α → & ' 6 : & → α likelihood = $" ! α ∗ $! (α|-) Σ∀! $" !|α ∗ $! α|-
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $ % = ! α = 4 = 0 $ % = ! α = 6 = 1 6!" $ % = ! α = 8 = 1 8!" $ % = ! α = 12 = 1 12!" $ % = ! α = 20 = 1 20!" likelihood
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -)
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -) %: 9 → ! 9 : sample space of data ! (20!"= 1,024,000,000,000 pa+ern)
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -) %: 9 → ! 9 : sample space of data ! (20$%= 1,024,000,000,000 paHern)
None
$! α|! = $" ! α ∗ $! (α|-) Σ∀!
$" !|α ∗ $! α|- ' 5 : α → & ' 6 : & → α likelihood $! () = α|+ = -) + ≅ +′ approximation $! ) = ∀α + = -& = 1 5 α ∈ {4, 6, 8, 12, 20}
$! α|! ≅ $" ! α ∗ $! (α|-′) Σ∀!
$" !|α ∗ $! α|-′ ' 5 : α → & ' 6 : & → α likelihood = -$ . α Σ∀! -$ .|α = -$ . α -$ . 4 + -$ . 6 + -$ . 8 + -$ . 12 + -$ . 20 ≈ -$ . α 1.7485A − 08 &! ∀α (" = 1 5
Hmmm......, so, how many ?
$(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood $$ 4 = 6|! ≅ $# % = ! 4 = 6 1.7485C − 08 ≈ 94.58%
$$ 6|! ≈ 94.58% $$ 6|9′ = 20% $$ 8|!
≈ 5.32% $$ 8|9′ = 20% $$ 12|! ≈ 0.09% $$ 12|9′ = 20% $$ 20|! ≈ 0.0005% $$ 20|9′ = 20% $$ 4|! = 0% $$ 4|9′ = 20% prior probability posterior probability Maximum a posteriori (MAP) estimation arg max! $! α ! = 6
Hmmm......, so, how many ?
$(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood $$ 4 = 6|! ≈ 94.58% maximum posteriori prob.
Hmmm......, so, how about ?
$(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood $$ 4 = 6|! ≈ 94.58% maximum posteriori prob. Could you predict & II?
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $# !!! ≤ 6|4 ∗ $$ 4|! = 0% $# !!! ≤ 6|6 ∗ $$ 6|! ≈ 94.58% $# !!! ≤ 6|8 ∗ $$ 8|! ≈ 3.99% $# !!! ≤ 6|12 ∗ $$ 12|! ≈ 0.046% $# !!! ≤ 6|20 ∗ $$ 20|! ≈ 0.0001% $# !!! ≤ 6 = = ∀$ {$# !!! ≤ 6|α ∗ $$ α|! } ≈ 98.62% predic$ve probability
Could you predict & II?
$ ) = 6 ! ≈ 94.58% $ !$$ ≤ 6 ! ≈ 98.62% and Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4}
Could you predict & II?
$ ) = 6 ! ≈ 94.58% $ !$$ ≤ 6 ! ≈ 98.62% and Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} OK, let’s try !!!!!
!!! = 8 Dice with
α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4}
$ ) = 6 !
≈ 94.58% $ !$$ ≤ 6 ! ≈ 98.62% Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} OK, let’s try "!!!! !)) = 8 " $ = 6 {,, ,## } = 0%
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|4′′) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|4′′) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|,) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} ́ ! = {!, 8} Non-informa$ve prior distribu$on 20% 20% 20% 20% 20% 0% 94.58% 5.32% 0.09% 0.005% 0% 0% 99.98% 0.02% 0.000004% -! (α|C′) -! (α|.) -! (α| ́ .)
$ ) = 8 ́
! ≈ 99.98% $ !$' ≤ 8 ́ ! ≈ 99.98% Dice with α faces ́ ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4, 8} OK!! Let’s try !!"!! COME OOON
No one knows what happened to them......
Hypothesis ObservaEon Truth Knowledge principle phenotype model data Dice with
α faces (regular polyhedron) ! = 5 ?
Hmmm......, so, how about
? $(α = 6) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} $ % = ! α = 6 = 1 6!" maximum likelihood ! α = 6 % = & !!??
! 7 *|, = ! 8 , * ∗ !
7 (*) ! 8 , $! ) = α|+ = ! = $" + = ! ) = α ∗ $! (α) $" ! ' 5 : α → & ' 6 : & → α likelihood Bayes’ theorem
$! α|! ≅ $" ! α ∗ $! (α|-′) Σ∀!
$" !|α ∗ $! α|-′ ' 5 : α → & ' 6 : & → α likelihood = -$ . α Σ∀! -$ .|α = -$ . α -$ . 4 + -$ . 6 + -$ . 8 + -$ . 12 + -$ . 20 ≈ -$ . α 1.7485A − 08 &! ∀α (" = 1 5
$$ 6|! ≈ 94.58% $$ 6|9′ = 20% $$ 8|!
≈ 5.32% $$ 8|9′ = 20% $$ 12|! ≈ 0.09% $$ 12|9′ = 20% $$ 20|! ≈ 0.0005% $$ 20|9′ = 20% $$ 4|! = 0% $$ 4|9′ = 20% prior probability posterior probability Maximum a posteriori probability (MAP) estimation arg max! $! α ! = 6
Dice with α faces ! = {5, 4, 3, 4,
2, 1, 2, 3, 1, 4} $# !!! ≤ 6|4 ∗ $$ 4|! = 0% $# !!! ≤ 6|6 ∗ $$ 6|! ≈ 94.58% $# !!! ≤ 6|8 ∗ $$ 8|! ≈ 3.99% $# !!! ≤ 6|12 ∗ $$ 12|! ≈ 0.046% $# !!! ≤ 6|20 ∗ $$ 20|! ≈ 0.0001% $# !!! ≤ 6 = = ∀$ {$# !!! ≤ 6|α ∗ $$ α|! } ≈ 98.62% predic$ve probability
"$ α|, ≅ "% , α ∗ "$ (α|4′) "%
(,) Dice with α faces ! = {5, 4, 3, 4, 2, 1, 2, 3, 1, 4} prior likelihood posterior /( ∀α 1) = 1 5 "$ α| ́ , ≅ "% ́ , α ∗ "$ (α|4′′) "% ( ́ ,) Dice with α faces ́ ! = {!, 8}
Experiment hypothesis observa$on principle phenotype model data Truth Knowledge f
X (unknown)
Strong hypothesis obs. principle phenotype f Weak hypothesis obs. principle
phenotype model Complex data f model Simple data “Hypothesis driven” “Data driven” Experimental design X X
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribution posterior distribuBon data predictive distribution $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribution posterior distribuBon data predictive distribution $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem Truth
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribuBon posterior distribuBon data predicBve distribuBon $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem #(%|') .(%) Truth L&'(M| $ Kullback-Leibler divergence
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribuBon posterior distribuBon data predicBve distribuBon $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem #(%|') .(%) Truth L&'(M| $ = −N( + P KL divergence Entropy Generalization error
/!" (.| # = Q[S $ − S(M)] = Q[(−log
$ ) − (−log M )] = Q log ( ) = ∫ M % ∗ log ((#) )(,|#) Y% = ∫ M % ∗ log M(!) Y% − ∫ M % ∗ log $ % ! Y% = −Q S M − ∫ M % ∗ log $ % ! Y% B( C Entropy Generaliza$on error
α ' -(.|α) α |' -(α|.) %|' -(2|α)- α .
prior distribuBon posterior distribution data predictive distribution $! α ∗ $" ! α $" ! = $! α|! likelihood prior posterior Bayes’ theorem #(%|') .(%) Truth L&'(M| $ = −N( + P KL divergence Entropy GeneralizaBon error arg min) L&'(M| $ ⟺ arg min) P P ≅ WAIC Watanabe Akaike InformaAon Criterion
Experiment hypothesis observa$on principle phenotype model data Truth Knowledge f
X (unknown)
Anaïs Nin – “Life shrinks or expands in proporRon to
one’s courage.” h0ps://images.gr-assets.com
Before ABer BeginneR Session BeginneR BeginneR
Enjoy!!