Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SappoRo.R_roundrobin
Search
kilometer
March 18, 2023
Programming
0
160
SappoRo.R_roundrobin
第10回Sapporo.Rで喋った際のスライドです。
kilometer
March 18, 2023
Tweet
Share
More Decks by kilometer
See All by kilometer
TokyoR#111_ANOVA
kilometer
2
910
TokyoR109.pdf
kilometer
1
500
TokyoR#108_NestedDataHandling
kilometer
0
840
TokyoR#107_R_GeoData
kilometer
0
460
TokyoR#104_DataProcessing
kilometer
1
720
TokyoR#103_DataProcessing
kilometer
0
910
TokyoR#102_RMarkdown
kilometer
1
680
TokyoR#101_RegressionAnalysis
kilometer
0
500
TokyoR#99_Divergence
kilometer
1
420
Other Decks in Programming
See All in Programming
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
660
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
880
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
120
Result型で“失敗”を型にするPHPコードの書き方
kajitack
4
560
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
1
720
明示と暗黙 ー PHPとGoの インターフェイスの違いを知る
shimabox
2
390
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
290
Benchmark
sysong
0
280
Blazing Fast UI Development with Compose Hot Reload (droidcon New York 2025)
zsmb
1
280
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
320
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
210
Go1.25からのGOMAXPROCS
kuro_kurorrr
1
850
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
The World Runs on Bad Software
bkeepers
PRO
69
11k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
Adopting Sorbet at Scale
ufuk
77
9.4k
A designer walks into a library…
pauljervisheath
207
24k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
940
Transcript
SappoRo.R #10 @kilometer00 2023.03.18 らくらく総当たり組み合わせ
Who!? Who?
Who!? 名前: 三村 @kilometer 職業: ポスドク (こうがくはくし) 専⾨: ⾏動神経科学(霊⻑類) 脳イメージング
医療システム⼯学 R歴: ~ 10年ぐらい 流⾏: アンキロサウルス
宣伝!!(書籍の翻訳に参加しました。) 絶賛販売中!
宣伝2!! R⾔語の地域コミュニティ@東京です。 定期的にR⾔語に関する勉強会を開催しています。 次回は4⽉22⽇!! 初⼼者特集回です!!
総当たり組み合わせ Round-robin そう あ あ く
dat_nest <- palmerpenguins::penguins %>% dplyr::group_nest(species) データを畳み込む > dat_nest # A
tibble: 3 × 2 species data <fct> <list<tibble[,7]>> 1 Adelie [152 × 7] 2 Chinstrap [68 × 7] 3 Gentoo [124 × 7] (息を吐くように)
# A tibble: 9 × 4 species.x species.y data.x data.y
<fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7] 総当たり組み合わせ # A tibble: 3 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Chinstrap [152 × 7] [68 × 7] 2 Adelie Gentoo [152 × 7] [124 × 7] 3 Chinstrap Gentoo [68 × 7] [124 × 7] 組み合わせ(combination) (round-robin)
base::expand.grid()関数 > dat_nest # A tibble: 3 × 2 species
data <fct> <list<tibble[,7]>> 1 Adelie [152 × 7] 2 Chinstrap [68 × 7] 3 Gentoo [124 × 7] dat_nest$species
grid <- dat_nest$species %>% expand.grid(., .) base::expand.grid()関数 > grid Var1
Var2 1 Adelie Adelie 2 Chinstrap Adelie 3 Gentoo Adelie 4 Adelie Chinstrap 5 Chinstrap Chinstrap 6 Gentoo Chinstrap 7 Adelie Gentoo 8 Chinstrap Gentoo 9 Gentoo Gentoo
dplyr::left_join()関数 > grid Var1 Var2 1 Adelie Adelie 2 Chinstrap
Adelie 3 Gentoo Adelie 4 Adelie Chinstrap 5 Chinstrap Chinstrap 6 Gentoo Chinstrap 7 Adelie Gentoo 8 Chinstrap Gentoo 9 Gentoo Gentoo > dat_nest # A tibble: 3 × 2 species data <fct> <list<tibble[,7]>> 1 Adelie [152 × 7] 2 Chinstrap [68 × 7] 3 Gentoo [124 × 7] ①対応づけて結合 ②対応づけて結合
dplyr::left_join()関数 dat_rr <- grid %>% tibble::as_tibble() %>% dplyr::left_join( dat_nest %>%
dplyr::rename(Var1 = "species"), by = "Var1" ) %>% dplyr::left_join( dat_nest %>% dplyr::rename(Var2 = "species"), by = "Var2" )
dplyr::left_join()関数 dat_rr <- grid %>% tibble::as_tibble() %>% dplyr::left_join( dat_nest %>%
dplyr::rename(Var1 = "species"), by = "Var1" ) %>% dplyr::left_join( dat_nest %>% dplyr::rename(Var2 = "species"), by = "Var2" ) ① ②
> dat_rr # A tibble: 9 × 4 Var1 Var2
data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7]
dplyr::rename()関数 dat_rr_rename <- dat_rr %>% rename(species.x = Var1) %>% rename(species.y
= Var2) > dat_rr_rename # A tibble: 9 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7]
dplyr::rename()関数 dat_rr_rename <- dat_rr %>% rename(species.x = Var1) %>% rename(species.y
= Var2) key <- "species" x <- stringr::str_c(key, ".x") y <- stringr::str_c(key, ".y") dat_rr_rename <- dat_rr %>% rename(!!x := Var1) %>% rename(!!y := Var2) 別解 {rlang}パッケージの演算⼦
# A tibble: 9 × 4 species.x species.y data.x data.y
<fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7] 総当たり組み合わせ # A tibble: 3 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Chinstrap [152 × 7] [68 × 7] 2 Adelie Gentoo [152 × 7] [124 × 7] 3 Chinstrap Gentoo [68 × 7] [124 × 7] 組み合わせ(combination) (round-robin)
grid <- dat_nest$species %>% expand.grid(., .) %>% subset(unclass(Var1) < unclass(Var2))
%>% tibble::as_tibble() base::subset()関数 > grid # A tibble: 3 × 2 Var1 Var2 <fct> <fct> 1 Adelie Chinstrap 2 Adelie Gentoo 3 Chinstrap Gentoo
という変換を パッケージにしました。 devtools::install_github( "kilometer0101/roundrobin" ) (4回⼿打ちしたら⾯倒臭くなったので)
roundrobin::roundrobin()関数 # A tibble: 9 × 4 species.x species.y data.x
data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Adelie [152 × 7] [152 × 7] 2 Chinstrap Adelie [68 × 7] [152 × 7] 3 Gentoo Adelie [124 × 7] [152 × 7] 4 Adelie Chinstrap [152 × 7] [68 × 7] 5 Chinstrap Chinstrap [68 × 7] [68 × 7] 6 Gentoo Chinstrap [124 × 7] [68 × 7] 7 Adelie Gentoo [152 × 7] [124 × 7] 8 Chinstrap Gentoo [68 × 7] [124 × 7] 9 Gentoo Gentoo [124 × 7] [124 × 7] library(roundrobin) palmerpenguins::penguins %>% roundrobin(key = "species")
library(roundrobin) palmerpenguins::penguins %>% roundrobin(key = "species", combination = TRUE) roundrobin::roundrobin()関数
# A tibble: 3 × 4 species.x species.y data.x data.y <fct> <fct> <list<tibble[,7]>> <list<tibble[,7]>> 1 Adelie Chinstrap [152 × 7] [68 × 7] 2 Adelie Gentoo [152 × 7] [124 × 7] 3 Chinstrap Gentoo [68 × 7] [124 × 7]
使ってみますか。
library(tidyverse) library(palmerpenguins) library(roundrobin) dat <- palmerpenguins::penguins %>% na.omit() %>% #
NA除去 mutate_at( vars(c(contains("mm"), contains("g"))), ~ (. - mean(.)) / sd(.) # 標準化 ) %>% select(species, contains("mm"), contains("g")) 前処理
> dat # A tibble: 333 × 5 species bill_length_mm
bill_depth_mm flipper_length_mm body_mass_g <fct> <dbl> <dbl> <dbl> <dbl> 1 Adelie -0.895 0.780 -1.42 -0.568 2 Adelie -0.822 0.119 -1.07 -0.506 3 Adelie -0.675 0.424 -0.426 -1.19 4 Adelie -1.33 1.08 -0.568 -0.940 5 Adelie -0.858 1.74 -0.782 -0.692 6 Adelie -0.931 0.323 -1.42 -0.723 7 Adelie -0.876 1.24 -0.426 0.581 8 Adelie -0.529 0.221 -1.35 -1.25 9 Adelie -0.986 2.05 -0.711 -0.506 10 Adelie -1.72 2.00 -0.212 0.240 # … with 323 more rows # i Use `print(n = ...)` to see more rows 前処理
dat_long <- dat %>% rowid_to_column("id") %>% pivot_longer( cols = !species,
names_to = "parameter", values_to = "value" ) %>% group_by(parameter) %>% ungroup() .y <- dat_long %>% ungroup() %>% group_by(species) %>% summarise( mean_id = mean(id), min_id = min(id) ) dat_long %>% ggplot() + aes(parameter, id) + geom_tile(aes(fill = value)) + geom_hline( yintercept = max(dat_long$id) ) + geom_hline(data = .y, aes(yintercept = min_id)) + scale_y_continuous( breaks = .y$mean_id, labels = .y$species, expand = c(0, 0)) + theme( axis.title = element_blank(), axis.text.x = element_text( angle = 30, hjust = 1 ) ) 可視化コード (ちょちょいのちょい)
可視化
> dat_rr # A tibble: 9 × 4 Var1 Var2
data.x data.y <fct> <fct> <list<tibble[,4]>> <list<tibble[,4]>> 1 Adelie Adelie [146 × 4] [146 × 4] 2 Chinstrap Adelie [68 × 4] [146 × 4] 3 Gentoo Adelie [119 × 4] [146 × 4] 4 Adelie Chinstrap [146 × 4] [68 × 4] 5 Chinstrap Chinstrap [68 × 4] [68 × 4] 6 Gentoo Chinstrap [119 × 4] [68 × 4] 7 Adelie Gentoo [146 × 4] [119 × 4] 8 Chinstrap Gentoo [68 × 4] [119 × 4] 9 Gentoo Gentoo [119 × 4] [119 × 4] 総当たり組み合わせ dat_rr <- dat %>% roundrobin(key = "species", rename = FALSE)
例えばマハラノビス距離 dat_rr_mahaD <- dat_rr %>% mutate(mahaD2 = map2( data.x, data.y,
# yに対するxの距離 ~ mahalanobis(.x, colMeans(.y), cov(.y)) )) %>% mutate(Var2 = str_c("vs. ", Var2)) > dat_rr_mahaD # A tibble: 9 × 5 Var1 Var2 data.x data.y mahaD2 <fct> <chr> <list<tibble[,4]>> <list<tibble[,4]>> <list> 1 Adelie vs. Adelie [146 × 4] [146 × 4] <dbl [146]> 2 Chinstrap vs. Adelie [68 × 4] [146 × 4] <dbl [68]> 3 Gentoo vs. Adelie [119 × 4] [146 × 4] <dbl [119]> 4 Adelie vs. Chinstrap [146 × 4] [68 × 4] <dbl [146]> 5 Chinstrap vs. Chinstrap [68 × 4] [68 × 4] <dbl [68]> 6 Gentoo vs. Chinstrap [119 × 4] [68 × 4] <dbl [119]> 7 Adelie vs. Gentoo [146 × 4] [119 × 4] <dbl [146]> 8 Chinstrap vs. Gentoo [68 × 4] [119 × 4] <dbl [68]> 9 Gentoo vs. Gentoo [119 × 4] [119 × 4] <dbl [119]>
例えばマハラノビス距離 dat_rr_mahaD <- dat_rr %>% mutate(mahaD2 = map2( data.x, data.y,
# yに対するxの距離 ~ mahalanobis(.x, colMeans(.y), cov(.y)) )) %>% mutate(Var2 = str_c("vs. ", Var2)) dat_mahaD <- dat_rr_mahaD %>% select(!data.y) %>% unnest(everything())
> dat_mahaD # A tibble: 999 × 7 Var1 Var2
bill_length_mm bill_…¹ flipp…² body_…³ mahaD2 <fct> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Adelie vs. Adelie -0.895 0.780 -1.42 -0.568 2.84 2 Adelie vs. Adelie -0.822 0.119 -1.07 -0.506 1.95 3 Adelie vs. Adelie -0.675 0.424 -0.426 -1.19 4.26 4 Adelie vs. Adelie -1.33 1.08 -0.568 -0.940 3.32 5 Adelie vs. Adelie -0.858 1.74 -0.782 -0.692 5.57 6 Adelie vs. Adelie -0.931 0.323 -1.42 -0.723 2.47 7 Adelie vs. Adelie -0.876 1.24 -0.426 0.581 5.94 8 Adelie vs. Adelie -0.529 0.221 -1.35 -1.25 5.27 9 Adelie vs. Adelie -0.986 2.05 -0.711 -0.506 7.75 10 Adelie vs. Adelie -1.72 2.00 -0.212 0.240 15.2 # … with 989 more rows, and abbreviated variable names # ¹bill_depth_mm, ²flipper_length_mm, ³body_mass_g # ℹ Use `print(n = ...)` to see more rows 例えばマハラノビス距離
例えばマハラノビス距離 ggplot(dat_mahaD) + aes(mahaD2, color = Var1, fill = Var1)
+ geom_density(alpha = 0.5) + facet_wrap(~Var2)
総当たり組み合わせ Round-robin そう あ あ く devtools::install_github( "kilometer0101/roundrobin" )
Enjoy!