& Xu, Y. (2020). Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing. Cambridge University Press. • [Xu et al. 2018] Xu, Y., Duan, W., & Huang, S. (2018). SQR: balancing speed, quality and risk in online experiments. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 895-904). • [Xu et al. 2015] Xu, Y., Chen, N., Fernandez, A., Sinno, O., & Bhasin, A. (2015). From infrastructure to culture: A/B testing challenges in large scale social networks. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 2227-2236). • [Zhang et al. 2016] Zhang, W., Zhou, T., Wang, J., & Xu, J. (2016). Bid-aware gradient descent for unbiased learning with censored data in display advertising. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 665-674). • [谷口 et al. 2019] 谷口和輝・安井翔太(2019)『Domain Adaptation Neural Networkを用いた広告クリック予 測』,人工知能学会全国大会論文集 (pp. 4O2J202-4O2J202). 46