Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
脱! Deepでポン🎶ハイパラチューニング芸人を卒業するために
Search
Hidehisa Arai
March 02, 2021
Technology
7
4.6k
脱! Deepでポン🎶ハイパラチューニング芸人を卒業するために
2021/3/2に開催されたsansan DSOC分析コンペ反省会の資料です
Hidehisa Arai
March 02, 2021
Tweet
Share
More Decks by Hidehisa Arai
See All by Hidehisa Arai
生成AIの二大潮流と自動運転
koukyo1994
22
23k
ICML2021論文読み会資料
koukyo1994
2
1.6k
【2019-06-19】アルゴリズム勉強会 - 最小全域木
koukyo1994
0
230
Kaggle昔?話
koukyo1994
2
2.4k
コンペ中のコード、どうしてる?
koukyo1994
3
2.1k
変数間の関係を捉えたいあなたへ
koukyo1994
3
1.6k
鳥蛙コンペ反省会資料
koukyo1994
3
1.4k
6th place solution to Cornell Birdcall Identification Challenge
koukyo1994
0
140
鳥コンペ反省会資料
koukyo1994
2
6.2k
Other Decks in Technology
See All in Technology
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
24k
いまさら聞けない Git 超入門 〜Gitって結局なに?から始める第一歩〜
devops_vtj
0
150
Introduction to Bill One Development Engineer
sansan33
PRO
0
240
Azure Developer CLI と Azure Deployment Environment / Azure Developer CLI and Azure Deployment Environment
nnstt1
1
120
他チームへ越境したら、生データ提供ソリューションのクエリ費用95%削減へ繋がった話 / Cross-Team Impact: 95% Off Raw Data Query Costs
yamamotoyuta
0
220
S3 Tables を図解でやさしくおさらい~基本から QuickSight 連携まで/s3-tables-illustrated-basics-quicksight
emiki
1
330
Machine Intelligence for Vision, Language, and Actions
keio_smilab
PRO
0
480
ProductZine Day 2025 Assuredのプロダクトディスカバリー
kechol
0
110
Oracle Cloud Infrastructure:2025年5月度サービス・アップデート
oracle4engineer
PRO
0
370
LT:組込み屋さんのオシロが壊れた!
windy_pon
0
330
カンファレンスのつくりかた / The Conference Code: What Makes It All Work
tomzoh
8
910
データ戦略部門 紹介資料
sansan33
PRO
1
3.1k
Featured
See All Featured
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Designing for Performance
lara
608
69k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.7k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.5k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2.1k
Unsuck your backbone
ammeep
671
58k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Transcript
%FFQͰϙϯ🎶 ϋΠύϥνϡʔχϯάܳਓΛଔۀ͢ΔͨΊʹ TBOTBO %40$ੳίϯϖษڧձ )JEFIJTB"SBJ !LBHHMF@BSBJTBO 1
ࣗݾհ • ݄͔Β৽ଔ • ͔ͭͯTBOTBOͰΠϯλʔϯ Λ͍ͯͨ͜͠ͱ͕͋Δ • େֶӃͷઐ߈ߤۭӉ ֶ͕ͩɺදݱֶशͷݚڀΛ͠ ͍ͯͨ
• ੳίϯϖ,BHHMFҰے 2
͡Ίʹ ͜ͷൃදͷఆ͍ͯ͠Δର • ެ։ϊʔτϒοΫΛ৭ʑ࿔ͬͨΓ͍ͯ͠ Δ͚ΕͲɺͦͷޙͲ͏͢Ε͍͍͔͔ Βͳ͍,BHHMFS • ,BHHMFͷղ๏ͳͲΛͨ·ʹಡΜͰΈΔ͚ Ͳɺ͍·͍͔ͪͬͨؾʹͳΕͳ͍ํ •
,BHHMF࣮ͬͯࡍϋΠύϥνϡʔχϯάͱ Ξϯαϯϒϧήʔ͡Όͳ͍ͷʁͬͯࢥͬ ͍ͯΔํ 3 「モデルの変更」、「Data Augmentationを ⾊々試す」、「学習パラメータをいじる」など 誰もが思いつくことの範囲を超えるためには? Kaggleの解法は「何をやったのか」が書いて あっても「なぜやったのか」が書かれていない こともある、どうすればそこを掴めるようにな る? TwitterのKaggler達はKaggleがハイパラチュー ニングゲーとかアンサンブルゲーと⾔われるこ とを嫌うけど、実際何が違うの?c
ཧղ ੳίϯϖ͕ͬͱ໘ന͘ͳΔεςοϓ 4 ՝ͷ͍͠ͱ͜ΖΛཧղ͢Δ ࠷ۙͷ,BHHMFͰɺͨͩ$//ʹ৯Θͤͯ ऴΘΓʂͱ͍͏՝·ͣग़ͳ͍ ղ ஔ ՝Λখ͞ͳ՝ʹղ͢Δɻ খ͞ͳ՝Λطͷʹஔ͖͑Δ
「可能な書記素は約10,000あり、そのうち約1,000がトレーニ ングセットに含まれています。テストセットには、トレイン には存在しないが新しい書記素コンポーネントがないいくつ かの書記素が含まれています」 ςετηοτʹະͷσʔλ͕͋Δ ίϯϙʔωϯτͷΈ߹ΘͤࣗମΘ͔͍ͬͯΔʁ ςετηοτʹະͷσʔλ͕͋Δ 0VUPG%JTUSJCVUJPO%FUFDUJPO ίϯϙʔωϯτͷΈ߹ΘͤࣗମΘ͔͍ͬͯΔʁ ;FSP4IPU-FBSOJOH
εςοϓᶃ ՝Λཧղ͢Δ 5 ʮը૾Λྨ͢ΔʯɺʮԻͷϥϕϦϯάʯͳͲ୯७ͳλεΫͦΕҎ֎ʹผͷ͕͋͠͞Δ͜ͱ͕ଟ͍ Կ͕͍͔͠ɺͱ͍͏ͷʮ%BUB%FTDSJQUJPOʯʮ&WBMVBUJPOʯɺ%JTDVTTJPOʹώϯτ͕͋Δ͜ͱ͋Δ • 5SBJOͱ5FTUͷͷҧ͍ • σʔλͷϊΠζྔͷࠩ
• Ϋϥεͷൺͷࠩ • 5FTUʹ5SBJOʹͳ͔ͬͨϥϕϧ͕͋Δ $PSOFMM#JSEDBMM*EFOUJGJDBUJPO 3BJOGPSFTU$POOFDUJPO4QFDJFT"VEJP%FUFDUJPO • λʔήοτͱͳΔ໐͖͕શͯΞϊςʔγϣ ϯ͞Ε͍ͯΔΘ͚Ͱͳ͍ • $7ͱ-#͕૬ؔ͠ͳ͍ https://qiita.com/inoichan/items/140cf018d31151d2701a
εςοϓᶄ ՝Λղ͢Δ 6 ݟ͔ͭͬͨ՝͕ͦΕͧΕͲͷΑ͏ͳؔʹ͋Δ͔Λߟ͑ɺରࡦՄೳͳ՝͕ग़ͯ͘Δ·Ͱղ͢Δ 「ターゲットとなる鳴き声が全てアノ テーションされているわけではない」 「ラベルのついていないターゲットの 鳴き声がデータには含まれている」 「CVとLBが相関しない」
「ラベルがついていない部分が あるためCVの計算が不正確」 対策可能な課題 対策が難しい? ͱ͖ʹؒΛຒΊ ͯΔඞཁ͋Δ ରࡦΛࢥ͍͚ͭʮରࡦՄೳͳ՝ʯ
εςοϓᶅ ՝Λஔ͖͑Δ 7 ՝Λطͷྨࣅͷ՝ʹஔ͖͑Δ 「ラベルのついていないターゲットの 鳴き声がデータには含まれている」 ͳͥஔ͖͑Λ͢Δͷ͔ʁ ମܥԽ͞ΕͨࣝΛ͑Δ
• ͕ࣗΉΑ͏ͳ՝େମಉ͜͡ͱʹΜ ͩਓ͕͍ͯɺղ๏͕Ͳ͔͜ʹ͋Δ • ֶମܥͷݴ༿ʹஔ͖͑Δͱݕࡧੑ͕ྑ͘ ͳΔ • ͱ͖ʹͷղͷղ૾্͕͕Δ ίϯϖͷ՝ΛநԽ͢Δ͜ͱͰࠓޙͷίϯϖͰ ͦͷܦݧΛ׆͔ͤΔ ʮطͷྨࣅͷ՝ʯͷϓʔϧ,BHHMFΛͬͯ ͍ͳ͍࣌Ͱେ͖͘Ͱ͖Δ • ,BHHMFΛ͍ͬͯͳͯ͘,BHHMFͰڧ͘ͳΕ Δ .JTTJOH-BCFMT 「ラベルの誤りがある」 -BCFM/PJTF 「TrainとTestで分布が異なる」 %PNBJO4IJGU
·ͱΊ 8 「モデルの変更」、「Data Augmentationを ⾊々試す」、「学習パラメータをいじる」など 誰もが思いつくことの範囲を超えるためには? ཧղɾղɾஔͷεςοϓΛ܁Γฦ͠ɺग़ ͖ͯͨ՝Λݸผʹ௵͍ͯ͘͠͏ͪʹଞͷਓ͕ ͍ͬͯͳ͍ղ๏ʹͳΔ Kaggleの解法は「何をやったのか」が書いて
あっても「なぜやったのか」が書かれていない こともある、どうすればそこを掴めるようにな る? Ͳ͏͍͏՝͕͋ͬͨͷ͔ ཧղͷεςοϓ ɺ ʹͯ͠ߟ͑Δͱ্Ґͷղ๏ʹೲಘײ͕ಘ ΒΕΔ TwitterのKaggler達はKaggleがハイパラチュー ニングゲーとかアンサンブルゲーと⾔われるこ とを嫌うけど、実際何が違うの? ϋΠύϥνϡʔχϯάΞϯαϯϒϧવେ ࣄ͕ͩɺݸʑͷ՝ʹଈͨ͠ରࡦ͕ॏཁɺͦ͜ ্͕ҐͱͦΕҎ֎ͷࠩʹͳ͍ͬͯΔ