Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
脱! Deepでポン🎶ハイパラチューニング芸人を卒業するために
Search
Hidehisa Arai
March 02, 2021
Technology
7
4.7k
脱! Deepでポン🎶ハイパラチューニング芸人を卒業するために
2021/3/2に開催されたsansan DSOC分析コンペ反省会の資料です
Hidehisa Arai
March 02, 2021
Tweet
Share
More Decks by Hidehisa Arai
See All by Hidehisa Arai
生成AIの二大潮流と自動運転
koukyo1994
22
23k
ICML2021論文読み会資料
koukyo1994
2
1.6k
【2019-06-19】アルゴリズム勉強会 - 最小全域木
koukyo1994
0
250
Kaggle昔?話
koukyo1994
2
2.5k
コンペ中のコード、どうしてる?
koukyo1994
3
2.2k
変数間の関係を捉えたいあなたへ
koukyo1994
3
1.7k
鳥蛙コンペ反省会資料
koukyo1994
3
1.4k
6th place solution to Cornell Birdcall Identification Challenge
koukyo1994
0
150
鳥コンペ反省会資料
koukyo1994
2
6.3k
Other Decks in Technology
See All in Technology
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
200
ハードウェアとソフトウェアをつなぐ全てを内製している企業の E2E テストの作り方 / How to create E2E tests for a company that builds everything connecting hardware and software in-house
bitkey
PRO
1
110
バイブスに「型」を!Kent Beckに学ぶ、AI時代のテスト駆動開発
amixedcolor
2
500
DDD集約とサービスコンテキスト境界との関係性
pandayumi
2
280
ガチな登山用デバイスからこんにちは
halka
1
230
KotlinConf 2025_イベントレポート
sony
1
100
S3アクセス制御の設計ポイント
tommy0124
2
180
AWSで推進するデータマネジメント
kawanago
1
1.2k
DevIO2025_継続的なサービス開発のための技術的意思決定のポイント / how-to-tech-decision-makaing-devio2025
nologyance
1
370
自作JSエンジンに推しプロポーザルを実装したい!
sajikix
1
170
下手な強制、ダメ!絶対! 「ガードレール」を「檻」にさせない"ガバナンス"の取り方とは?
tsukaman
2
420
Language Update: Java
skrb
2
290
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Faster Mobile Websites
deanohume
309
31k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.5k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
%FFQͰϙϯ🎶 ϋΠύϥνϡʔχϯάܳਓΛଔۀ͢ΔͨΊʹ TBOTBO %40$ੳίϯϖษڧձ )JEFIJTB"SBJ !LBHHMF@BSBJTBO 1
ࣗݾհ • ݄͔Β৽ଔ • ͔ͭͯTBOTBOͰΠϯλʔϯ Λ͍ͯͨ͜͠ͱ͕͋Δ • େֶӃͷઐ߈ߤۭӉ ֶ͕ͩɺදݱֶशͷݚڀΛ͠ ͍ͯͨ
• ੳίϯϖ,BHHMFҰے 2
͡Ίʹ ͜ͷൃදͷఆ͍ͯ͠Δର • ެ։ϊʔτϒοΫΛ৭ʑ࿔ͬͨΓ͍ͯ͠ Δ͚ΕͲɺͦͷޙͲ͏͢Ε͍͍͔͔ Βͳ͍,BHHMFS • ,BHHMFͷղ๏ͳͲΛͨ·ʹಡΜͰΈΔ͚ Ͳɺ͍·͍͔ͪͬͨؾʹͳΕͳ͍ํ •
,BHHMF࣮ͬͯࡍϋΠύϥνϡʔχϯάͱ Ξϯαϯϒϧήʔ͡Όͳ͍ͷʁͬͯࢥͬ ͍ͯΔํ 3 「モデルの変更」、「Data Augmentationを ⾊々試す」、「学習パラメータをいじる」など 誰もが思いつくことの範囲を超えるためには? Kaggleの解法は「何をやったのか」が書いて あっても「なぜやったのか」が書かれていない こともある、どうすればそこを掴めるようにな る? TwitterのKaggler達はKaggleがハイパラチュー ニングゲーとかアンサンブルゲーと⾔われるこ とを嫌うけど、実際何が違うの?c
ཧղ ੳίϯϖ͕ͬͱ໘ന͘ͳΔεςοϓ 4 ՝ͷ͍͠ͱ͜ΖΛཧղ͢Δ ࠷ۙͷ,BHHMFͰɺͨͩ$//ʹ৯Θͤͯ ऴΘΓʂͱ͍͏՝·ͣग़ͳ͍ ղ ஔ ՝Λখ͞ͳ՝ʹղ͢Δɻ খ͞ͳ՝Λطͷʹஔ͖͑Δ
「可能な書記素は約10,000あり、そのうち約1,000がトレーニ ングセットに含まれています。テストセットには、トレイン には存在しないが新しい書記素コンポーネントがないいくつ かの書記素が含まれています」 ςετηοτʹະͷσʔλ͕͋Δ ίϯϙʔωϯτͷΈ߹ΘͤࣗମΘ͔͍ͬͯΔʁ ςετηοτʹະͷσʔλ͕͋Δ 0VUPG%JTUSJCVUJPO%FUFDUJPO ίϯϙʔωϯτͷΈ߹ΘͤࣗମΘ͔͍ͬͯΔʁ ;FSP4IPU-FBSOJOH
εςοϓᶃ ՝Λཧղ͢Δ 5 ʮը૾Λྨ͢ΔʯɺʮԻͷϥϕϦϯάʯͳͲ୯७ͳλεΫͦΕҎ֎ʹผͷ͕͋͠͞Δ͜ͱ͕ଟ͍ Կ͕͍͔͠ɺͱ͍͏ͷʮ%BUB%FTDSJQUJPOʯʮ&WBMVBUJPOʯɺ%JTDVTTJPOʹώϯτ͕͋Δ͜ͱ͋Δ • 5SBJOͱ5FTUͷͷҧ͍ • σʔλͷϊΠζྔͷࠩ
• Ϋϥεͷൺͷࠩ • 5FTUʹ5SBJOʹͳ͔ͬͨϥϕϧ͕͋Δ $PSOFMM#JSEDBMM*EFOUJGJDBUJPO 3BJOGPSFTU$POOFDUJPO4QFDJFT"VEJP%FUFDUJPO • λʔήοτͱͳΔ໐͖͕શͯΞϊςʔγϣ ϯ͞Ε͍ͯΔΘ͚Ͱͳ͍ • $7ͱ-#͕૬ؔ͠ͳ͍ https://qiita.com/inoichan/items/140cf018d31151d2701a
εςοϓᶄ ՝Λղ͢Δ 6 ݟ͔ͭͬͨ՝͕ͦΕͧΕͲͷΑ͏ͳؔʹ͋Δ͔Λߟ͑ɺରࡦՄೳͳ՝͕ग़ͯ͘Δ·Ͱղ͢Δ 「ターゲットとなる鳴き声が全てアノ テーションされているわけではない」 「ラベルのついていないターゲットの 鳴き声がデータには含まれている」 「CVとLBが相関しない」
「ラベルがついていない部分が あるためCVの計算が不正確」 対策可能な課題 対策が難しい? ͱ͖ʹؒΛຒΊ ͯΔඞཁ͋Δ ରࡦΛࢥ͍͚ͭʮରࡦՄೳͳ՝ʯ
εςοϓᶅ ՝Λஔ͖͑Δ 7 ՝Λطͷྨࣅͷ՝ʹஔ͖͑Δ 「ラベルのついていないターゲットの 鳴き声がデータには含まれている」 ͳͥஔ͖͑Λ͢Δͷ͔ʁ ମܥԽ͞ΕͨࣝΛ͑Δ
• ͕ࣗΉΑ͏ͳ՝େମಉ͜͡ͱʹΜ ͩਓ͕͍ͯɺղ๏͕Ͳ͔͜ʹ͋Δ • ֶମܥͷݴ༿ʹஔ͖͑Δͱݕࡧੑ͕ྑ͘ ͳΔ • ͱ͖ʹͷղͷղ૾্͕͕Δ ίϯϖͷ՝ΛநԽ͢Δ͜ͱͰࠓޙͷίϯϖͰ ͦͷܦݧΛ׆͔ͤΔ ʮطͷྨࣅͷ՝ʯͷϓʔϧ,BHHMFΛͬͯ ͍ͳ͍࣌Ͱେ͖͘Ͱ͖Δ • ,BHHMFΛ͍ͬͯͳͯ͘,BHHMFͰڧ͘ͳΕ Δ .JTTJOH-BCFMT 「ラベルの誤りがある」 -BCFM/PJTF 「TrainとTestで分布が異なる」 %PNBJO4IJGU
·ͱΊ 8 「モデルの変更」、「Data Augmentationを ⾊々試す」、「学習パラメータをいじる」など 誰もが思いつくことの範囲を超えるためには? ཧղɾղɾஔͷεςοϓΛ܁Γฦ͠ɺग़ ͖ͯͨ՝Λݸผʹ௵͍ͯ͘͠͏ͪʹଞͷਓ͕ ͍ͬͯͳ͍ղ๏ʹͳΔ Kaggleの解法は「何をやったのか」が書いて
あっても「なぜやったのか」が書かれていない こともある、どうすればそこを掴めるようにな る? Ͳ͏͍͏՝͕͋ͬͨͷ͔ ཧղͷεςοϓ ɺ ʹͯ͠ߟ͑Δͱ্Ґͷղ๏ʹೲಘײ͕ಘ ΒΕΔ TwitterのKaggler達はKaggleがハイパラチュー ニングゲーとかアンサンブルゲーと⾔われるこ とを嫌うけど、実際何が違うの? ϋΠύϥνϡʔχϯάΞϯαϯϒϧવେ ࣄ͕ͩɺݸʑͷ՝ʹଈͨ͠ରࡦ͕ॏཁɺͦ͜ ্͕ҐͱͦΕҎ֎ͷࠩʹͳ͍ͬͯΔ