Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
P 値と有意差/分散分析 / P-value and Analysis of Variance
Search
Kenji Saito
PRO
January 09, 2024
Business
0
140
P 値と有意差/分散分析 / P-value and Analysis of Variance
早稲田大学大学院経営管理研究科「企業データ分析」2023 冬の第9-10回で使用したスライドです。
Kenji Saito
PRO
January 09, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
P 値と有意差/分散分析 / P-value, Significant Difference and Analysis of Variance
ks91
PRO
0
29
関連2群のt検定/独立2群のt検定 / Related 2-group t-test and independent 2-group t-test
ks91
PRO
0
51
A Guide to Paper Writing Support with Generative AI - A Joint Zemi
ks91
PRO
0
9
正規分布と簡単な統計理論/t分布と信頼区間 / Normal distribution, simple statistical theory, t-distribution and confidence intervals
ks91
PRO
0
43
じわじわ迫ってきている自動化社会 (その先にメタ・ネイチャー) / The Slowly Approaching Automated Society (and its beyond: Meta-Nature)
ks91
PRO
0
6
起こりうる誤った推論/平均・分散・標準偏差・自由度 / Possible false inferences, means, variances, standard deviations and degrees of freedom
ks91
PRO
0
59
LaTeX と Overleaf によるショートペーパー作成 / Short paper writing with LaTeX and Overleaf
ks91
PRO
0
23
R を用いた検定(補講) (1) — Welch 検定 / Tests using R (supplementary) (1) - Welch test
ks91
PRO
0
12
R を用いた検定(補講) (2) — カイ二乗検定 / Tests using R (supplementary) (2) - Chi-squared test
ks91
PRO
0
13
Other Decks in Business
See All in Business
株式会社ispec 会社紹介資料
emikamihara
0
5.9k
DNX Ventures Japan|Introduction Deck
natsumidnx
0
820
採用ピッチ_ITインフラ本部_SRE部.pdf
owada
0
180
Sales Marker Culture book
salesmarker
PRO
8
26k
ビジネスデザインメソッド「匠Method」を深く理解する/Gain a deeper understanding of the business design method "Takumi Method"
takumi_method_ug
0
140
BionicM 会社紹介/採用説明
bionicm
0
210
WED Company Guide
wed
2
44k
【After】サービス紹介資料③_HP掲載用
redeslide
0
550
NEXERA inc. | Company Deck
nexera
0
8k
CData 製品を使って不動産API を可視化!実際に注文住宅を買ってみるまでの話
cdataj
2
240
ストーリーテリングでチームに”熱"を伝える🔥
inagakikay
1
11k
Digital Experience, Inc. - Company Deck
sprasiainc
0
18k
Featured
See All Featured
Adopting Sorbet at Scale
ufuk
74
9.1k
A designer walks into a library…
pauljervisheath
205
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
190
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Why Our Code Smells
bkeepers
PRO
335
57k
KATA
mclloyd
29
14k
How STYLIGHT went responsive
nonsquared
96
5.2k
YesSQL, Process and Tooling at Scale
rocio
170
14k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
3
310
GitHub's CSS Performance
jonrohan
1031
460k
The Cult of Friendly URLs
andyhume
78
6.1k
Transcript
generated by Stable Diffusion XL v1.0 2023 9-10 P (WBS)
2023 9-10 P — 2024-01-11 – p.1/26
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2023-winter 2023 9-10 P — 2024-01-11 – p.2/26
( ) 1 11 30 • 2 11 30 (B
A ) • 3 12 7 • 4 12 7 • 5 12 14 • 6 12 14 t • 7 12 21 2 ( ) t • 8 12 21 2 ( ) t • 9 1 11 P • 10 1 11 • 11 1 18 12 1 18 13 1 25 14 1 25 W-IOI 2023 9-10 P — 2024-01-11 – p.3/26
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) • 9 R ( ) (1) — Welch 10 R ( ) (2) — χ2 11 R ( ) (1) — 12 R ( ) (2) — 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/21 ) / (2 ) OK / 2023 9-10 P — 2024-01-11 – p.4/26
( Student µ 95% ) 7 2 t ( t
) 2 ( ) 2 d ( ) ← [ 3] σd 2 t 8 2 t ( t ) 2 ( ) ( ) ← [ 4] σ 2 t 2023 9-10 P — 2024-01-11 – p.5/26
2 2 t 1 9 P P 10 H0 HA
k, N, ¯ ¯ x σ2 ( )MSwithin ( )MSbetween MStotal F F 2023 9-10 P — 2024-01-11 – p.6/26
2023 9-10 P — 2024-01-11 – p.7/26
4. t (1) 2 t (2) 2 t (3) 2024
1 7 ( ) 23:59 JST ( ) Waseda Moodle (Q & A ) (1)(2) Discord 2023 9-10 P — 2024-01-11 – p.8/26
. . . . . . 10 7 (1/9( )
) ( ) → 7 ( ) ( ) → 1 ( ) → 1 0 ( 2 ) vs. 0 ( 2 ) ( 2 ) vs. ( 2 ) → 5 2023 9-10 P — 2024-01-11 – p.9/26
I (1/2) 2 t BMI 5 (A B C D
E) 1 BMI ( ) 2 t 0 5 BMI A 34 ⇒ 21 B 35 ⇒ 24 C 38 ⇒ 26 D 40 ⇒ 32 E 33 ⇒ 35 ⇒ ↑ I 2023 9-10 P — 2024-01-11 – p.10/26
2 t d : µd 0 ( 2 ) :
(1) d d, sd , n, df (2) |d| sd n |t| (3) t0.05 (df) < |t| ( ) R > t.test(sample2, sample1, paired=T) 2023 9-10 P — 2024-01-11 – p.11/26
I (2/2) 2 t 2 5 5 2 t 0
10 A 5.6 4.9 5.3 6.0 5.1 B 8.2 7.6 6.8 7.5 8.3 ⇒ ↑ I 2023 9-10 P — 2024-01-11 – p.12/26
2 t xA xB : µA − µB 0 (
2 ) : (1) xA − xB , sp , nA nB , df (2) |xA − xB | sp nA nB |t| (3) t0.05 (df) < |t| ( ) R > t.test(sample2, sample1, var.equal=T) 2023 9-10 P — 2024-01-11 – p.13/26
I ⇒ 12 R “ .txt” “ .txt” 2023 9-10
P — 2024-01-11 – p.14/26
S 2 2 t ⇒ p.28 2023 9-10 P —
2024-01-11 – p.15/26
K ⇒ 2023 9-10 P — 2024-01-11 – p.16/26
9 P P 2023 9-10 P — 2024-01-11 – p.17/26
α β P P H0 ( ) P 0.05 (P
= 0.015) (P = 0.361) 2023 9-10 P — 2024-01-11 – p.18/26
10 H0 HA k, N, ¯ ¯ x σ2 (
) MSwithin ( )MSbetween MStotal ( SStotal dftotal ) F F 2023 9-10 P — 2024-01-11 – p.19/26
(1/3) k (1) : (2) : σ2 ( ) N(µ,
σ2) µ1 = µ2 = · · · = µk N ( ) ¯ ¯ x ¯ ¯ x = k j=1 nj i=1 xji N (j i N ) 2023 9-10 P — 2024-01-11 – p.20/26
(2/3) ( )MSwithin σ2 MSwithin = SSwithin dfwithin = k
j=1 nj i=1 (xji − ¯ xj )2 N − k ( N− ) ( )MSbetween σ2 MSbetween = SSbetween dfbetween = k j=1 nj (¯ xj − ¯ ¯ x)2 k − 1 ( −1 ) ( H0 σ2 ) 2023 9-10 P — 2024-01-11 – p.21/26
(3/3) MStotal MStotal = SStotal dftotal = k j=1 nj
i=1 (xji − ¯ ¯ x)2 N − 1 ( N − 1 ) : SStotal = SSbetween + SSwithin, dftotal = dfbetween + dfwithin F F = MSbetween MSwithin F0.05 (dfbetween, dfwithin ) < F ( H0 ) 2023 9-10 P — 2024-01-11 – p.22/26
U ( p.227) 20 4 “ U.R” ( anova() )
pp.226–227 2023 9-10 P — 2024-01-11 – p.23/26
2023 9-10 P — 2024-01-11 – p.24/26
5. (1) ( ) (2) 2024 1 14 ( )
23:59 JST ( ) Waseda Moodle (Q & A ) (1)(2) Discord 2023 9-10 P — 2024-01-11 – p.25/26
2023 9-10 P — 2024-01-11 – p.26/26