Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ネットワークグラフを作成する
Search
kunou
July 06, 2018
Technology
0
58
ネットワークグラフを作成する
kunou
July 06, 2018
Tweet
Share
More Decks by kunou
See All by kunou
GANについて
kunou
0
440
AIか何かについて.pdf
kunou
0
39
Pythonを書いていておーマジかーと感じたあれこれ
kunou
1
730
Rubyで機械学習してみた
kunou
1
1.1k
ZIP!!
kunou
0
180
zip
kunou
0
520
Make Mouse
kunou
0
650
RubyのProcのあれをこうしました
kunou
0
99
esm lt Clojure like threading macro
kunou
0
450
Other Decks in Technology
See All in Technology
RSCの時代にReactとフレームワークの境界を探る
uhyo
10
3.3k
Skrub: machine-learning with dataframes
gaelvaroquaux
0
120
BPaaSにおける人と協働する前提のAIエージェント-AWS登壇資料
kentarofujii
0
130
20250903_1つのAWSアカウントに複数システムがある環境におけるアクセス制御をABACで実現.pdf
yhana
3
530
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
200
Obsidian応用活用術
onikun94
1
440
大「個人開発サービス」時代に僕たちはどう生きるか
sotarok
20
9.5k
Function Body Macros で、SwiftUI の View に Accessibility Identifier を自動付与する/Function Body Macros: Autogenerate accessibility identifiers for SwiftUI Views
miichan
2
180
ZOZOマッチのアーキテクチャと技術構成
zozotech
PRO
3
1.4k
JTCにおける内製×スクラム開発への挑戦〜内製化率95%達成の舞台裏/JTC's challenge of in-house development with Scrum
aeonpeople
0
190
ChatGPTとPlantUML/Mermaidによるソフトウェア設計
gowhich501
1
120
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
110
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
A better future with KSS
kneath
239
17k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Code Reviewing Like a Champion
maltzj
525
40k
RailsConf 2023
tenderlove
30
1.2k
Become a Pro
speakerdeck
PRO
29
5.5k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.8k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
19k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Transcript
ωοτϫʔΫάϥϑΛੜ ͢Δ(ClojureͰ) 2018/6/15 ITS-training-camp
ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ) ͜͏͍͏ਤΛੜ͠·͢
ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ) ͜͏͍͏ਤΛੜ͠·͢
DEMO ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ίʔυશମ (ns gen-network.core) (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as
str]) (require '[loom.graph :as lg]) (require '[loom.io :as lio]) (def data-text “data.txt") (def keywords ["a" "b" "c" "d"]) (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) (defn word-relation [key list] (->> list (filter (fn [words] (some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) (defn main [] (->> keywords (reduce (fn [accum keyword] (concat accum (word-relation keyword data-list))) []) )) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) (main) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ $ cat data.txt a, b c, d a, b
a, b a, b a, e c, d a, e a, d c, b e, d ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ) JavaͷΫϥεΛΠϯϙʔτ
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) clojure.stringΛ͑ΔΑ͏ʹ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) FileReaderΛॳظԽ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) BuffReaderΛॳظԽ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ߦ͝ͱʹ͚Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ϑΝΠϧΛಡΈࠐΉ (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as str]) (def
data-text "data.txt") (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ߦΛ``,``Ͱ͚ͯVectorʹ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) (word-relation "a" data-list) => (["a" "b" 4] ["a" "e" 2] ["a" "d" 1]) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => ([“a” “b”] [“c” “d”] [“a” “b”] [“a” “b”] [“a” “b”] [“a” “e”] [“c” “d”] [“a” “e”] [“a” “d”] [“c” “b”] [“e" “d"]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => (["a" "b"] ["a" "b"] ["a" "b"] ["a" "b"] ["a" "e"] ["a" "e"] ["a" "d"]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => (("b") ("b") ("b") ("b") ("e") ("e") ("d")) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => ("b" "b" "b" "b" "e" "e" "d") ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => {"b" ["b" "b" "b" "b"], "e" ["e" "e"], "d" ["d"]} ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ಡΈࠐΜͩ݁Ռ͔ΒΈ߹ΘͤճΛ͑Δ (defn word-relation [key list] (->> list (filter (fn [words]
(some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) => (["a" "b" 4] ["a" "e" 2] ["a" "d" 1]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) => (["a" "b" 4] ["a" "e" 2] ["a" "d" 1] [“b" "a" 4] ["b" "c" 1] ["c" "d" 2] ["c" "b" 1] [“d" "c" 2] ["d" "a" 1] ["d" "e" 1]) ͜͜·Ͱ࣮ߦ͢Δ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) άϥϑσʔλΛ࡞ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ޙϥΠϒϥϦͷྗͰ (defn main [] (->> keywords (reduce (fn [accum keyword]
(concat accum (word-relation keyword data-list))) []) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) ஔΛࢦఆͯ͠ඳը ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
ίʔυશମ (ns gen-network.core) (import '(java.io BufferedReader FileReader)) (require '[clojure.string :as
str]) (require '[loom.graph :as lg]) (require '[loom.io :as lio]) (def data-text “data.txt") (def keywords ["a" "b" "c" "d"]) (def data-list (->> (FileReader. data-text) (BufferedReader.) (line-seq) (map #(str/split % #", ")))) (defn word-relation [key list] (->> list (filter (fn [words] (some #(= % key) words))) (map (fn [words] (remove #(= key %) words))) (flatten) (group-by #(identity %)) ((fn [group] (map #(vector key (first %) (count (second %))) group))))) (defn main [] (->> keywords (reduce (fn [accum keyword] (concat accum (word-relation keyword data-list))) []) )) ; (remove (fn [x] (<= (nth x 2) 4))) (apply lg/weighted-graph) ((fn [graph] (lio/view graph :alg :fdp))))) (main) ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
·ͱΊ ͪΐͬͱͨ͠πʔϧΛ࡞Δͱ͖ͳͲɺؔܕݴޠΛ͏ͱ͘εο ΩϦ͔͚·͢ɻ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)
·ͱΊ ͪΐͬͱͨ͠πʔϧΛ࡞Δͱ͖ͳͲɺؔܕݴޠΛ͏ͱ͘εο ΩϦ͔͚·͢ɻ RubyPythonΛͬͯ͘ॻ͚·͚͢ͲͶɻ ωοτϫʔΫάϥϑΛੜ͢Δ(ClojureͰ)