Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データカタログ運用物語 〜令和6年夏の理想と現実〜
Search
kuro
July 26, 2024
Programming
1
310
データカタログ運用物語 〜令和6年夏の理想と現実〜
Cloud Operator Days2024で登壇した時のスライドです。
kuro
July 26, 2024
Tweet
Share
More Decks by kuro
See All by kuro
Module Proxyのマニアックな話 / Niche Topics in Module Proxy
kuro_kurorrr
0
2.6k
Weak References in Go 1.24: Memory Management Superpowers
kuro_kurorrr
0
45
サプライチェーン攻撃に学ぶModuleの仕組みと セキュリティ対策
kuro_kurorrr
3
1k
PipeCD と Bucketeer の Document MCP Serverを作って公開した話
kuro_kurorrr
0
150
近頃の気になるGo testingパッケージ
kuro_kurorrr
3
570
Go1.25からのGOMAXPROCS
kuro_kurorrr
3
1.5k
Go Modules: From Basics to Beyond / Go Modulesの基本とその先へ
kuro_kurorrr
0
170
最速Green Tea 🍵 Garbage Collector
kuro_kurorrr
5
1.1k
fieldalignmentから見るGoの構造体
kuro_kurorrr
0
190
Other Decks in Programming
See All in Programming
なんでRustの環境構築してないのにRust製のツールが動くの? / Why Do Rust-Based Tools Run Without a Rust Environment?
ssssota
15
48k
AIを駆使して新しい技術を効率的に理解する方法
nogu66
0
570
アーキテクチャと考える迷子にならない開発者テスト
irof
2
200
MCPサーバー「モディフィウス」で変更容易性の向上をスケールする / modifius
minodriven
7
1.4k
Eloquentを使ってどこまでコードの治安を保てるのか?を新人が考察してみた
itokoh0405
0
3.1k
Dive into Triton Internals
appleparan
0
480
r2-image-worker
yusukebe
1
160
PHPライセンス変更の議論を通じて学ぶOSSライセンスの基礎
matsuo_atsushi
0
140
歴史から学ぶ「Why PHP?」 PHPを書く理由を改めて理解する / Learning from History: “Why PHP?” Rediscovering the Reasons for Writing PHP
seike460
PRO
0
140
ボトムアップの生成AI活用を推進する社内AIエージェント開発
aku11i
0
1.6k
Private APIの呼び出し方
kishikawakatsumi
2
830
AI駆動開発カンファレンスAutumn2025 _AI駆動開発にはAI駆動品質保証
autifyhq
0
150
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Designing Experiences People Love
moore
142
24k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Embracing the Ebb and Flow
colly
88
4.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
Thoughts on Productivity
jonyablonski
73
4.9k
Facilitating Awesome Meetings
lara
57
6.6k
Typedesign – Prime Four
hannesfritz
42
2.9k
KATA
mclloyd
PRO
32
15k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
データカタログ運用物語 〜令和6年夏の理想と現実〜 Cloud Operator Days Tokyo 2024 kuroda naoki
自己紹介 - 名前:kuroda naoki - 所属:株式会社サイバーエージェン トAI事業本部 プリズムパートナーカンパニー kuro @knkurokuro7
データカタログとは データカタログとは、データレイクなどからユーザーが取得したいデータを容易に取得できるよう にするために管理されているメタデータのカタログ。 引用: https://www.techtarge t.com/searchdataman agement/definition/da ta-catalog
データカタログとは - DataHubという LinkedIn製のOSSをホ スティング。 - EKS,Helm,OpenSear ch,MSK(Kafka),RDS を使ってホスティングし て、CI/CDには、
GitHub Actions ,Terraform等
データカタログとは メタデータを検索できる
データカタログで解決したい課題 - 散乱するメタデータ - 誰かが知っているテーブルの意味 - 使われているかどうかわからないカラム - データ抽出の際のコミュニケーションコスト -
DSはもちろんビジネスサイド、エンジニアの間でデータの知識に差 がある。
理想の形 1. データカタログをまずは見にいく習慣がある。 2. どこに何のデータがあるかわかる。 3. 過度なコミュニケーションコストがかかることなく、データに関する意思決定が行わ れる。 →まずはここさえ見ればデータのことはなんでもわかる形を目指す
当初の目論見 まずは使われることを目指して、 1. 明確なユースケース 2. メタデータが更新され続けていること の2つの要素があればなんとかなりそう?
1. 明確なユースケース 1.データ抽出の際にどのカラムを使えばいいのかを把握できるようなカタログとして使う。 - よく使うテーブルやカラムの中身がすぐにわかる。 - 同じような名前のカラムがあるときにその違いがわかる。 2. エンジニアがシステム開発の際にカラム同士の関係や使われ方を理解するために使う。 -
mysqlやdynamodb,snowflakeのカラムの意味や関係性を把握する。 3. 新しい人が入ってきた時にデータ理解のオンボーディング資料として使う。 4. あるデータに対して属人化しそうな特殊な意味が追加されたときにメモとして使う。
2. データが更新され続けていること 1. メタデータを人が更新するタイミングがあること。 - 作業のついでにメタデータを書き込んでもらう。 - 例えば)テーブルAは古いので2024年6月時点で使っていませ ん。カラムBにはこの抽出で使うデータが入ってます。 2.
メタデータがシステムが更新するタイミングがあること。 - システム的に毎日自動連携する。 - 例えば)Snowflakeのカラム情報をGitHub Actions で連携す る。
1. 明確なユースケース はある程度固まってるから、 2. メタデータが更新され続けていること に注力しよう!
施策①連携できるメタデータの幅を増やす - DataHubのメタデータ自動連携をGithubActionsで毎日実行。 - Snowflake,dbt,MySQL,DynamoDB、Business Glossary(DataHubでの用語集 みたいな感じのもの、カラムやテーブルに紐付けられる。)等を連携する。
施策②散らばったテーブルメタデータを取り込む - 外部から連携されるSnowflakeテーブルごとのExcelカラム情報がGoogleDrive だったり、Slackだったり、個人のローカルだったりに散らばっていた。 - それを、CSVに変換して、DataHubのCSV Ingestionという機能で連携。
これで使ってもらえる!→実際データ抽出の際に参照してもらった り。。。
それでも残る課題 最初は物珍しさと集約したテーブルメタデータのため多少使われていた が、徐々に使われなくなりつつある。。
それでも残る課題 実際にヒアリングしてみると、想定していたユースケースでは使い慣れた他のツールで 代替されている。 →定期的に必要な業務に組み込む =データカタログがないと成り立たない業務フロー
これからやりたいこと - データの鮮度をデータワークフローの中で管理する。 - 毎日データを連携するStep FunctionsでのETLフローがあり、 その中でクエリの履歴やカラムの更新情報を取得して、 DataHub APIで「deprecated」 tagを付与する。
これからやりたいこと
これからやりたいこと - 今まであまりできていなかった「不要なテーブルの棚卸し」という業務に組 み込むことでよりデータカタログを見に行く機会が増えるのではないか。 - ここまでを実際にやりたかったのですが、間に合わなかったので、またどこ かでお話しできれば。。
まとめ - ユースケースを定義して周知するだけではツールは使ってもらえな い。 - 他のツールでは代替できないような用途に使えるように、業務フ ローに組み込む。 - そもそも既にデータカタログ起点で、「どこで使えるのか」を考えてし まっている。→心底必要でないなら作らない方が良かったのかもし
れない。